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1 Learning Goals 

1. Be able to determine whether an expression defines a valid interval statistic. 

2. Be able to compute 𝑧 and 𝑡 confidence intervals for the mean given normal data. 

3. Be able to compute the 𝜒2 confidence interval for the variance given normal data. 

4. Be able to define the confidence level of a confidence interval. 

5. Be able to explain the relationship between the 𝑧 confidence interval (and confidence 
level) and the 𝑧 non-rejection region (and significance level) in NHST. 

2 Introduction 

We continue to survey the tools of frequentist statistics. Suppose we have a model (proba-
bility distribution) for observed data with an unknown parameter. We have seen how NHST 
uses data to test the hypothesis that the unknown parameter has a particular value. 
We have also seen how point estimates like the MLE use data to provide an estimate of the 
unknown parameter. On its own, a point estimate like 𝑥̄ = 2.2 carries no information about 
its accuracy; it’s just a single number, regardless of whether its based on ten data points or 
one million data points. 
For this reason, statisticians augment point estimates with confidence intervals. For exam-
ple, to estimate an unknown mean 𝜇 we might be able to say that our best estimate of 
the mean is 𝑥 = 2.2 with a 95% confidence interval [1.2, 3.2]. Another way to describe the 
interval is: 𝑥 ± 1. 
We will leave to later the explanation of exactly what the 95% confidence level means. 
For now, we’ll note that taken together the width of the interval and the confidence level 
provide a measure on the strength of the evidence supporting the hypothesis that the 𝜇 is 
close to our estimate 𝑥. You should think of the confidence level of an interval as analogous 
to the significance level of a NHST. As explained below, it is no accident that we often see 
significance level 𝛼 = 0.05 and confidence level 0.95 = 1 − 𝛼. 
We will first explore confidence intervals in situations where you will easily be able to com-
pute by hand: 𝑧 and 𝑡 confidence intervals for the mean and 𝜒2 confidence intervals for the 
variance. We will use R to handle all the computations in more complicated cases. Indeed, 
the challenge with confidence intervals is not their computation, but rather interpreting 
them correctly and knowing how to use them in practice. 

1 
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3 Interval statistics 

Recall that our definition of a statistic is anything that can be computed from data. In 
particular, the formula for a statistic cannot include unknown quantities. 
Example 1. Suppose 𝑥1, … , 𝑥𝑛 is drawn from N(𝜇, 𝜎2) where 𝜇 and 𝜎 are unknown. 
(i) 𝑥 and 𝑥 − 5 are statistics. 
(ii) 𝑥 − 𝜇 is not a statistic since 𝜇 is unknown. 
(iii) If 𝜇0 a known value, then 𝑥 − 𝜇0 is a statistic. This case arises when we consider the 
null hypothesis 𝜇 = 𝜇0. For example, if the null hypothesis is 𝜇 = 5, then the statistic 
𝑥 − 𝜇0 is just 𝑥 − 5 from (i). 
We can play the same game with intervals to define interval statistics 

Example 2. Suppose 𝑥1, … , 𝑥𝑛 is drawn from N(𝜇, 𝜎2) where 𝜇 is unknown. 
(i) The interval [𝑥 − 2.2, 𝑥 + 2.2] = 𝑥 ± 2.2 is an interval statistic. 

(ii) If 𝜎 is known, then [𝑥 − √2𝜎
𝑛, 𝑥 + √2𝜎

𝑛] is an interval statistic. 

(iii) On the other hand, if 𝜎 is unknown then [𝑥 − √2𝜎
𝑛, 𝑥 + √2𝜎

𝑛] is not an interval statistic. 

(iv) If 𝑠2 is the sample variance, then [𝑥 − √2𝑠
𝑛, 𝑥 + √2𝑠

𝑛] is an interval statistic because 𝑠2 

is computed from the data. 
We will return to (ii) and (iv), as these are respectively the 𝑧 and 𝑡 confidence intervals for 
estimating 𝜇. 
Technically an interval statistic is nothing more than a pair of point statistics giving the 
lower and upper bounds of the interval. Our reason for emphasizing that the interval is a 
statistic is to highlight the following: 

1. The interval is random – new random data will produce a new interval. 

2. As frequentists, we are perfectly happy using it because it doesn’t depend on the value 
of an unknown parameter or hypothesis. 

3. As usual with frequentist statistics we have to assume a certain hypothesis, e.g. value 
of 𝜇, before we can compute probabilities about the interval. 
Example 3. Suppose we draw 𝑛 samples 𝑥1, … , 𝑥𝑛 from a N(𝜇, 1) distribution, where 
𝜇 is unknown. Suppose we wish to know the probability that 0 is in the interval 
[𝑥 − 2, 𝑥 + 2]. Without knowing the value of 𝜇 this is impossible. However, we can 
compute this probability for any given (hypothesized) value of 𝜇. 

4. A warning which will be repeated: Be careful in your thinking about these probabili-
ties. Confidence intervals are a frequentist notion. Since frequentists do not compute 
probabilities of hypotheses, the confidence level is never a probability that the 
unknown parameter is in the specific confidence interval computed from 
the given data. 
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4 𝑧 confidence intervals for the mean 

Throughout this section we will assume that we have normally distributed data: 

𝑥1, 𝑥2, … , 𝑥𝑛 ∼ N(𝜇, 𝜎2). 

As we often do, we will introduce the main ideas through examples, building on what 
we know about rejection and non-rejection regions in NHST until we have constructed a 
confidence interval. 

4.1 Definition of 𝑧 confidence intervals for the mean 

We start with 𝑧 confidence intervals for the mean. First we’ll give the formula. Then we’ll 
walk through the derivation in one entirely numerical example. This will give us the basic 
idea. Then we’ll repeat this example, replacing the explicit numbers by symbols. Finally 
we’ll work through a computational example. 
Definition: Suppose the data 𝑥1, … , 𝑥𝑛 ∼ N(𝜇, 𝜎2), with unknown mean 𝜇 and known 
variance 𝜎2. The (1 − 𝛼) confidence interval for 𝜇 is 

√𝑛 

𝜎 √𝑛 

𝜎 
[𝑥 − 

𝑧𝛼/2 ⋅ 
, 𝑥 + 

𝑧𝛼/2 ⋅ 
] , (1) 

where 𝑧𝛼/2 is the right critical value 𝑃 (𝑍 > 𝑧𝛼/2) = 𝛼/2. 
For example, if 𝛼 = 0.05 then 𝑧𝛼/2 = 1.96 so the 0.95 (or 95%) confidence interval is 

[𝑥 − 
1.96𝜎√𝑛 

, 𝑥 + 
1.96𝜎√𝑛 

] . 

We’ve created an applet that generates normal data and displays the corresponding 𝑧 con-
fidence interval for the mean. It also shows the 𝑡-confidence interval, as discussed in the 
next section. Play around to get a sense for random intervals! 
https://mathlets.org/mathlets/confidence-intervals/ 

Example 4. Suppose we collect 100 data points from a N(𝜇, 32) distribution and the 
sample mean is 𝑥 = 12. Give the 95 % confidence interval for 𝜇. 
Solution: Using formula 1, this is trivial to compute: the 95% confidence interval for 𝜇 is 

[𝑥 − 
1.96𝜎√𝑛 

, 𝑥 + 
1.96𝜎 ⋅ 3 ⋅ 3√𝑛 

] = [12 − 
1.96 , 12 + 

1.96 ]10 10 

4.2 Explaining the definition part 1: non-rejection regions 

Our next goal is to explain the definition 1 starting from our knowledge of rejection/non-
rejection regions. The phrase ‘non-rejection region’ is not pretty, but we will discipline 
ourselves to use it instead of the inacurate phrase ‘acceptance region’. 

https://mathlets.org/mathlets/confidence-intervals/
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Example 5. Suppose that 𝑛 = 12 data points are drawn from N(𝜇, 52) where 𝜇 is unknown. 
As usual, call the average of the data 𝑥. Set up a two-sided 𝑧-test of 𝐻0 ∶ 𝜇 = 2.71 at 
significance level 𝛼 = 0.05. Describe the rejection and non-rejection regions. 
Solution: Under the null hypothesis (𝜇 = 2.71) we have 

𝑥 − 2.71 𝑧 = 
5/

√
12 

∼ N(0, 1) 

We know that, for 𝛼 = 0.05, the non-rejection region for 𝑧 is 

[−1.96, 1.96]. 

That is, we do not reject if, assuming 𝐻0, 𝑧 is within two standard deviations of the 
standardized mean. By definition, this means 

𝑃 (−1.96 ≤ 𝑧 ≤ 1.96 | 𝜇 = 2.71) = 0.95. 

And, the rejection region is 
(−∞, −1.96) ∪ (1.96, ∞). 

For confidence intervals, we will want to unwind the definition of 𝑧 and write the regions in 
terms of 𝑥. This allows us to directly use the natural statistic 𝑥. 
Example 6. Redo the previous example using 𝑥 as the test statistic. 
Solution: Under the null hypothesis (𝜇 = 2.71) we have 𝑥𝑖 ∼ N(2.71, 52) and thus 

𝑥 ∼ N(2.71, 52/12) 

where 52/12 is the variance 𝑥. We know that for normal data, significance 𝛼 = 0.05 
corresponds to a rejection region starting 1.96 standard deviations from the hypothesized 
mean. That is, 
Non-rejection region: We do not reject 𝐻0 if 𝑥 is in the interval 

⋅ 5 2.71 + 
1.96 ⋅ 5[2.71 − 

1.96 , = [−0.12, 5.54]. √
12 

√
12 

] 

That is, we do not reject if, assuming 𝐻0, 𝑥 is within two standard deviations of the 
hypothesized mean. By definition, this means 

𝑃 (−0.12 ≤ 𝑥 ≤ 5.54 | 𝜇 = 2.71) = 0.95. 

Rejection region: 

⋅ 5 ⋅ 5(−∞, 2.71 − 
1.96 , ∞) = (−∞, −0.12] ∪ [5.54, ∞). √

12 
] ∪ [2.71 + 

1.96√
12 

The following figure shows the rejection and non-rejection regions for 𝑥. The regions repre-
sent ranges of 𝑥 so they are represented by the colored bars on the 𝑥 axis. The area of the 
shaded region in the tails is the significance level. 

https://���=2.71
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𝑥

𝑁(2.71, 52/12)

−0.12 5.542.71

The rejection (orange) and non-rejection (blue) regions for 𝑥. 

Now, what about different data or null hypotheses. This is straight-forward, let’s redo the 
previous example using symbols for all quantities. 
Example 7. Suppose that 𝑛 data points are drawn from N(𝜇, 𝜎2) where 𝜇 is unknown and 
𝜎 is known. Set up a two-sided significance test of 𝐻0 ∶ 𝜇 = 𝜇0 using the statistic 𝑥 at 
significance level 𝛼. Describe the rejection and non-rejection regions. 
Solution: Under the null hypothesis 𝜇 = 𝜇0 we have 𝑥𝑖 ∼ N(𝜇0, 𝜎2) and thus 

𝑥 ∼ N(𝜇0, 𝜎2/𝑛), 

where 𝜎2/𝑛 is the variance (𝜎𝑥)2 of 𝑥 and 𝜇0, 𝜎 and 𝑛 are all known values. 
Let 𝑧𝛼/2 be the critical value: 𝑃 (𝑍 > 𝑧𝛼/2) = 𝛼/2. Then the non-rejection and rejection 
regions are separated by the values of 𝑥 that are 𝑧𝛼/2 ⋅ 𝜎𝑥 from the hypothesized mean. 
Since 𝜎𝑥 = √𝜎𝑛 

we have 

Non-rejection region: we do not reject 𝐻0 if 𝑥 is in the interval 

[𝜇0 − 
𝑧𝛼/2 ⋅ 𝑧𝛼/2 ⋅√𝑛

𝜎
, 𝜇0 + √𝑛

𝜎
] (2) 

Rejection region: 

⋅ 𝑧𝛼/2 ⋅√𝑛 

𝜎 √𝑛 

𝜎 
(−∞, 𝜇0 − 

𝑧𝛼/2 ] ∪ [𝜇0 + , ∞) . 

We get the same figure as above, with the explicit numbers replaced by symbolic values. 

𝑥

𝑁(𝜇0, 𝜎2/𝑛)

𝜇0𝜇0 − 𝑧𝛼/2⋅𝜎√𝑛 𝜇0 + 𝑧𝛼/2⋅𝜎√𝑛

The rejection (orange) and non-rejection (blue) regions for 𝑥. 

4.3 Manipulating intervals: algebraic pivoting 

We need to get comfortable manipulating intervals. In general, we will make use of the 
type of ‘obvious’ statements that can be hard to get across. First is the notion of pivoting. 
Stripping away the statistical terms, pivoting is the following algebraic maneuver. 
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Example 8. Algebraic pivoting. Suppose we have two variables 𝑎 and 𝑏. Suppose also 
that 𝑎 is in the interval [𝑏 − 4, 𝑏 + 6]. Show that 𝑏 is in the interval [𝑎 − 6, 𝑎 + 4]. 
Solution: We are given, 𝑏 − 4 ≤ 𝑎 ≤ 𝑏 + 6. Therefore, 

−4 ≤ 𝑎 − 𝑏 ≤ 6 ⇒ 4 ≥ 𝑏 − 𝑎 ≥ −6 ⇒ 𝑎 + 4 ≥ 𝑏 ≥ 𝑎 − 6. QED 

This is called pivoting because the roles of 𝑎 and 𝑏 are reversed along with the direction of 
the inequalities. 
In the example above, the ranges on either side of 𝑏 are different. Quite often they will be 
the same. Here are some simple numerical examples of pivoting for symmetric intervals. 
Example 9. (i) 1.5 is in the interval [0−2.3, 0+2.3], so 0 is in the interval [1.5−2.3, 1.5+2.3] 
(ii) Likewise 1.5 is not in the interval [0−1, 0+1], so 0 is not in the interval [1.5−1, 1.5+1]. 

4.4 Pivoting non-rejection intervals to confidence intervals 

For normal data, the non-rejection region for 𝑥 is an interval centered on 𝜇0. By pivoting, 
we get the confidence interval for 𝜇 centered on 𝑥. 
Example 10. Suppose we have 𝑛 data points with a sample mean 𝑥 and hypothesized 
mean 𝜇0 = 2.71. Suppose also that the null distribution is 𝑥𝑖 ∼ N(𝜇0, 32). Then with a 
significance level of 0.05 we have: 

(1a) The non-rejection region is centered on 𝜇0 = 2.71. That is, we don’t reject 𝐻0 if 𝑥 is 
in the interval 

[𝜇0 − 
1.96𝜎√𝑛 

, 𝜇0 + 
1.96𝜎√𝑛 

] 

(1b) Assuming the null hypothesis we have 

𝑃 (𝑥 is in the non-rejection region | 𝐻0) = 1 − 𝛼 = 0.95. 

That is, 
𝑃 (𝜇0 − 

1.96𝜎 ≤ 𝑥 ≤ 𝜇0 + 
1.96𝜎 | 𝐻0) = 0.95√𝑛 
√𝑛 

(2a) Pivoting (1a) gives: we don’t reject 𝐻0 if 𝜇0 is in the interval 

[𝑥 − 
1.96𝜎√𝑛 

, 𝑥 + 
1.96𝜎√𝑛 

] 

(2b) Pivoting (1b) gives: assuming the null hypothesis we have 

𝑃 (𝑥 − 
1.96𝜎 ≤ 𝜇0 ≤ 𝑥 + 

1.96𝜎 | 𝐻0) = 0.95√𝑛 
√𝑛 

The interval in (2a) is called the 0.95 confidence interval for 𝜇. It is centered on 𝑥, it has 
the same width as the non-rejection region. 
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Again, notice the symmetry: the statement ‘𝑥 is in the non-rejection interval around 𝜇0’ is 
equivalent to ‘𝜇0 is in the confidence interval [𝑥 − 1.96𝜎, 𝑥 + 1.96𝜎] around 𝑥’. 
Here is a visualization of pivoting from intervals around 𝜇0 to intervals around 𝑥. In the 
figures, 𝜇0 = 1 and 𝑥 = 1.5. The first pair of intervals have width 2 and the second pair 
have width 4.6. 

−2 −1 0 1 2 3 4
𝜇0 𝑥

𝜇0 ± 1 interval centered on 𝜇0 does not contain 𝑥
𝑥 ± 1 interval centered on 𝑥 does not contain 𝜇0
𝜇0 ± 2.3 interval centered on 𝜇0 contains 𝑥
𝑥 ± 2.3 interval centered on 𝑥 contains 𝜇0

The first pair of intervals shows the interval 𝜇0 ± 1 pivoted to the interval 𝑥 ± 1. Since 𝑥 
is not in the first interval, 𝜇0 is not in the pivoted interval. In the second pair of intervals, 
since 𝑥 is in the interval 𝜇0 ± 2.3, we see 𝜇0 is in the pivoted interval 𝑥 ± 2.3. 

4.5 Summary of normal confidence intervals: definition and properties 

Suppose 𝑥1, 𝑥2, … , 𝑥𝑛 are independent data from a N(𝜇, 𝜎2) distribution. We assume 𝜇 is 
unknown, but 𝜎 is known. 

• Definition. The 1 − 𝛼 confidence interval for 𝜇 is 

[𝑥 − 
𝑧𝛼/2√𝑛

𝜎 
, 𝑥 + 

𝑧𝛼/2√𝑛
𝜎 

] , 

where 𝑧𝛼/2 is standard normal 𝛼/2 critical value. 

• The confidence interval only depends on 𝑥 and known values, so it is a statistic. 

• The confidence interval is random: different data generate different intervals. 

• If the null hypothesis is 𝜇 = 𝜇0, then the confidence interval is found by pivoting the 
non-rejection region. If 𝜇0 is in the 1 − 𝛼 confidence interval, then we do not reject
𝐻0 at significance level 𝛼. Likewise, we do reject 𝐻0 at significance level 𝛼 if 𝜇0 is not 
in the 1 − 𝛼 confidence interval. 

• Assuming 𝐻0, then in 95% of random trials the 95% confidence interval will contain 
𝜇0. 

The following figure illustrates how we don’t reject 𝐻0 if the confidence interval around 𝑥 
contains 𝜇0 and we reject 𝐻0 if the confidence interval doesn’t contain 𝜇0. There is a lot in 
the figure so we will list carefully what you are seeing: 
1. We started with the figure from Example 6 which shows the null distribution for 𝜇0 = 2.71 
and the rejection and non-rejection regions. 
2. We added two possible values of the statistic 𝑥, i.e. 𝑥1 and 𝑥2, and their confidence 
intervals. Note that the width of each interval is exactly the same as the width of the 

non-rejection region since both use ±1.96 ⋅ 5 .√
12 
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The first value, 𝑥1, is in the non-rejection region and its interval includes the null hypothesis 
𝜇0 = 2.71. This illustrates that not rejecting 𝐻0 corresponds to the confidence interval 
containing 𝜇0. 
The second value, 𝑥2, is in the rejection region and its interval does not contain 𝜇0. This 
illustrates that rejecting 𝐻0 corresponds to the confidence interval not containing 𝜇0. 

𝑥

𝑁(2.71, 52/12)

−.12 5.542.71 𝑥1𝑥2

The non-rejection region (blue) and two confidence intervals (light blue). 
We can still wring one more essential observation out of this example. Our choice of null 
hypothesis 𝜇 = 2.71 was completely arbitrary. If we replace 𝜇 = 2.71 by any other hy-
pothesis 𝜇 = 𝜇0 then the confidence interval is the same, i.e. it does not depend on any 
hypothesis. 

4.6 Explaining the definition part 3: translating a general non-rejection 
region to a confidence interval 

Note that the specific values of 𝜎 and 𝑛 in the preceding example were of no particular 
consequence, so they can be replaced by their symbols. In this way we can take Example 7 
quickly through the same steps as Example6. 
In words, Equation 2 and the corresponding figure say that we don’t reject if 

𝑥 is in the interval 𝜇0 ± 
𝑧𝛼/2√𝑛 

𝜎 
. 

This is exactly equivalent to saying that we don’t reject if 

𝜇0 is in the interval 𝑥 ± 
𝑧𝛼/2√𝑛 

𝜎 
. (3) 

We can rewrite equation 3 as: at significance level 𝛼 we don’t reject if 

the interval 
⋅

[𝑥 − 
𝑧𝛼/2√𝑛 

𝜎 
, 

⋅
𝑥 + 

𝑧𝛼/2√𝑛 

𝜎 
] contains 𝜇0. (4) 

We call the interval 4 a (1 − 𝛼) confidence interval because, assuming 𝜇 = 𝜇0, on average 
it will contain 𝜇0 in the fraction (1 − 𝛼) of random trials. 

The following figure illustrates the point that 𝜇0 is in the (1− 𝛼) confidence interval around 
𝑥 is equivalent to 𝑥 is in the non-rejection region (at significance level 𝛼) for 𝐻0 ∶ 𝜇0 = 𝜇. 
The figure shows 𝑥1 is in the non-rejection region for 𝜇0, so the confidence interval around 
𝑥1 contains 𝜇0. 
Similarly, 𝑥2 is not in the non-rejection region for 𝜇0, so the confidence interval around 𝑥2 

does not contain 𝜇0. 
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Note, that the confidence intervals and the non-rejection region all have the same width! 

𝑥

𝑁(𝜇0, 𝜎2/𝑛)

𝜇0 − 𝑧𝛼/2 ⋅ 𝜎√𝑛 𝜇0 + 𝑧𝛼/2 ⋅ 𝜎√𝑛𝜇0 𝑥1𝑥2

4.7 Computational example 

Example 11. Suppose the data 2.5, 5.5, 8.5, 11.5 was drawn from a N(𝜇, 102) distribution 
with unknown mean 𝜇. 
(a) Compute the point estimate 𝑥 for 𝜇 and the corresponding 50%, 80% and 95% confidence 
intervals. 
(b) Consider the null hypothesis 𝜇 = 1. Would you reject 𝐻0 at 𝛼 = 0.05? 𝛼 = 0.20?
𝛼 = 0.50? Do these two ways: first by checking if the hypothesized value of 𝜇 is in the 
relevant confidence interval and second by constructing a rejection region. 
Solution: (a) We compute that 𝑥 = 7.0. The critical points are
𝑧0.025 = qnorm(0.975) = 1.96, 𝑧0.1 = qnorm(0.9) = 1.28, 𝑧0.25 = qnorm(0.75) = 
0.67. 
Since 𝑛 = 4 we have 𝑥 ∼ N(𝜇, 102/4), i.e. 𝜎𝑥 = 5. So we have: 
95% conf. interval = [𝑥 − 𝑧0.025𝜎𝑥, 𝑥 + 𝑧0.025𝜎𝑥] = [7 − 1.96 ⋅ 5, 7 + 1.96 ⋅ 5] = [−2.8, 16.8]
80% conf. interval = [𝑥 − 𝑧0.1𝜎𝑥, 𝑥 + 𝑧0.1𝜎𝑥] = [7 − 1.28 ⋅ 5, 7 + 1.28 ⋅ 5] = [ 0.6, 13.4]
50% conf. interval = [𝑥 − 𝑧0.75𝜎𝑥, 𝑥 + 𝑧0.75𝜎𝑥] = [7 − 0.67 ⋅ 5, 7 + 0.67 ⋅ 5] = [ 3.65, 10.35] 

Each of these intervals is a range estimate of 𝜇. Notice that the higher the confidence level, 
the wider the interval needs to be. 
(b) Since 𝜇 = 1 is in the 95% and 80% confidence intervals, we would not reject the null 
hypothesis at the 𝛼 = 0.05 or 𝛼 = 0.20 levels. Since 𝜇 = 1 is not in the 50% confidence 
interval, we would reject 𝐻0 at the 𝛼 = 0.5 level. 
We construct the rejection regions using the same critical values as in part (a). The differ-
ence is that rejection regions are intervals centered on the hypothesized value for 𝜇: 𝜇0 = 1 
and confidence intervals are centered on 𝑥. Here are the rejection regions. 
𝛼 = 0.05 ⇒ (−∞, 𝜇0 − 𝑧0.025𝜎𝑥] ∪ [𝜇0 + 𝑧0.025𝜎𝑥, ∞) = (−∞, −8.8] ∪ [10.8, ∞) 
𝛼 = 0.20 ⇒ (−∞, 𝜇0 − 𝑧0.1𝜎𝑥] ∪ [𝜇0 + 𝑧0.1𝜎𝑥, ∞) = (−∞, −5.4] ∪ [7.4, ∞) 
𝛼 = 0.25 ⇒ (−∞, 𝜇0 − 𝑧0.25𝜎𝑥] ∪ [𝜇0 + 𝑧0.25𝜎𝑥, ∞) = (−∞, −2.35] ∪ [4.35, ∞) 

To to do the NHST we must check whether or not 𝑥 = 7 is in the rejection region. 

https://qnorm(0.75
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𝛼 = 0.05: 7 < 10.8 is not in the rejection region. 
We do not reject the hypothesis that 𝜇 = 1 at a significance level of 0.05. 

𝛼 = 0.2: 7 < 7.4 is not in the rejection region. 
We do not reject the hypothesis that 𝜇 = 1 at a significance level of 0.2. 

𝛼 = 0.5: 7 > 4.35 is in the rejection region. 
We reject the hypothesis that 𝜇 = 1 at a significance level 0.5. 

We get the same answers using either method. 

5 𝑡-confidence intervals for the mean 

This will be nearly identical to normal confidence intervals. In this setting 𝜎 is not known, 
so we have to make the following replacements. 

1. Use 𝑠𝑥 = √𝑠
𝑛 

instead of 𝜎𝑥 = √𝜎𝑛 
. Here 𝑠 is the sample variance we used before in 

𝑡-tests 

2. Use 𝑡-critical values instead of 𝑧-critical values. 

5.1 Definition of t-confidence intervals for the mean 

Definition: Suppose that 𝑥1, … , 𝑥𝑛 ∼ N(𝜇, 𝜎2), where the values of the mean 𝜇 and the 
standard deviation 𝜎 are both unknown. . The (1 − 𝛼) confidence interval for 𝜇 is 

⋅ 𝑡𝛼/2 ⋅[𝑥 − 
𝑡𝛼/2√𝑛 

𝑠
, 𝑥 + √𝑛 

𝑠
] , (5) 

here 𝑡𝛼/2 is the right critical value 𝑃 (𝑇 > 𝑡𝛼/2) = 𝛼/2 for 𝑇 ∼ 𝑡(𝑛 − 1) and 𝑠2 is the sample 
variance of the data. 

5.2 Construction of 𝑡 confidence intervals 

For 𝑡 confidence intervals we repeat the construction of normal confidence intervals with 𝜎 
replaced by its estimate 𝑠. 
Suppose that 𝑛 data points are drawn from N(𝜇, 𝜎2) where 𝜇 and 𝜎 are unknown. We’ll 
derive the 𝑡 confidence interval following the same pattern as for the 𝑧 confidence interval. 
Under the null hypothesis 𝜇 = 𝜇0, we have 𝑥𝑖 ∼ N(𝜇0, 𝜎2). So the studentized mean follows 
a Student 𝑡 distribution with 𝑛 − 1 degrees of freedom: 

𝑥 − 𝜇0𝑡 = 𝑠/√𝑛 
∼ 𝑡(𝑛 − 1). 

Let 𝑡𝛼/2 be the critical value: 𝑃 (𝑇 > 𝑡𝛼/2) = 𝛼/2, where 𝑇 ∼ 𝑡(𝑛 − 1). We know from 
running one-sample 𝑡-tests that the non-rejection region is given by 

|𝑡| ≤ 𝑡𝛼/2 
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Using the definition of the 𝑡-statistic to write the rejection region in terms of 𝑥 we get: at 
significance level 𝛼 we don’t reject if 

|𝑥 − 𝜇0| ≤ 𝑡𝛼/2 ⇔ |𝑥 − 𝜇0| ≤ 𝑡𝛼/2 ⋅ √
𝑠
𝑛.𝑠/√𝑛 

Geometrically, the right hand side says that we don’t reject if 

𝜇0 is within 𝑡𝛼/2 ⋅ √
𝑠
𝑛 

of 𝑥. 

This is exactly equivalent to saying that we don’t reject if 

⋅ 𝑡𝛼/2 ⋅√𝑛 

𝑠 
the interval [𝑥 − 

𝑡𝛼/2 , 𝑥 + √𝑛 

𝑠
] contains 𝜇0. 

This interval is the confidence interval defined in 5. 
Example 12. Suppose the data 2.5, 5.5, 8.5, 11.5 was drawn from a N(𝜇, 𝜎2) distribution 
with 𝜇 and 𝜎 both unknown. 
Give interval estimates for 𝜇 by finding the 95%, 80% and 50% confidence intervals. 
Solution: By direct computation we have 𝑥 = 7 and 𝑠2 = 15. The critical points are
𝑡0.025 = qt(0.975) = 3.18, 𝑡0.1 = qt(0.9) = 1.64, and 𝑡0.25 = qt(0.75) = 0.76. 

95% conf. interval = [𝑥 − 𝑡0.025 ⋅ √
𝑠
𝑛, 𝑥 + 𝑡0.025 ⋅ √

𝑠
𝑛] = [0.84, 13.16] 

80% conf. interval = [𝑥 − 𝑡0.1 ⋅ √
𝑠
𝑛, 𝑥 + 𝑡0.1 ⋅ √

𝑠
𝑛] = [3.82, 10.18] 

50% conf. interval = [𝑥 − 𝑡0.25 ⋅ √
𝑠
𝑛, 𝑥 + 𝑡0.25 ⋅ √

𝑠
𝑛] = [5.53, 8.47] 

All of these confidence intervals give interval estimates for the value of 𝜇. Again, notice 
that the higher the confidence level, the wider the corresponding interval. 

6 Chi-square confidence intervals for the variance 

We now turn to an interval estimate for the unknown variance. 
Definition: Suppose the data 𝑥1, … , 𝑥𝑛 is drawn from N(𝜇, 𝜎2) with mean 𝜇 and standard 
deviation 𝜎 both unknown. The (1 − 𝛼) confidence interval for the variance 𝜎2 is 

[(𝑛 − 1)𝑠2 (𝑛 − 1)𝑠2 

, ] . (6)𝑐𝛼/2 𝑐1−𝛼/2 

Here 𝑐𝛼/2 is the right critical value 𝑃(𝑋2 > 𝑐𝛼/2) = 𝛼/2 for 𝑋2 ∼ 𝜒2(𝑛 − 1) and 𝑠2 is the 
sample variance of the data. 
The derivation of this interval is nearly identical to that of the previous derivations, now 
starting from the chi-square test for variance. The basic fact we need is that, for data drawn 
from N(𝜇, 𝜎2), the statistic 

(𝑛 − 1)𝑠2 

𝜎2 
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follows a chi-square distribution with 𝑛 −1 degrees of freedom. So given the null hypothesis 
𝐻0 ∶ 𝜎 = 𝜎0, the test statistic is (𝑛 − 1)𝑠2/𝜎0

2 and the non-rejection region at significance 
level 𝛼 is 

𝑐1−𝛼/2 < 
(𝑛 − 1)𝑠2 

< 𝑐𝛼/2.𝜎0
2 

Pivoting algebra converts this to 

(𝑛 − 1)𝑠2 

> 𝜎0
2 > 

(𝑛 − 1)𝑠2 

.𝑐1−𝛼/2 𝑐𝛼/2 

This says we don’t reject if 

[(𝑛 − 1)𝑠2 (𝑛 − 1)𝑠2 

the interval , ] contains 𝜎0
2

𝑐𝛼/2 𝑐1−𝛼/2 

This is our (1 − 𝛼) confidence interval. 
A difference from the 𝑧 and 𝑡 confidence intervals is that this chi-square confidence intervals 
are not exactly symmetric around the estimator 𝑠2. The reason is that the chi-square 
distribution (with 𝑛 − 1 degrees of freedom) is not symmetric around its mean 𝑛 − 1. 

We will continue our exploration of confidence intervals next class. In the meantime, truly 
the best way is to internalize the meaning of the confidence level is to experiment with the 
confidence interval applet: 
https://mathlets.org/mathlets/confidence-intervals/ 

https://mathlets.org/mathlets/confidence-intervals/
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