Class 22 in-class problems, 18.05, Spring 2022

Concept questions

Concept question 1. Critical values

1. $z_{0.025}=$
(a) -1.96
(b) -0.95
(c) 0.95
(d) 1.96
(e) 2.87
2. $-z_{0.16}=$
(a) -1.33
(b) -0.99
(c) 0.99
(d) 1.33
(e) 3.52

Board questions

Problem 1. Computing confidence intervals
The data $4,1,2,3$ is drawn from $\mathrm{N}\left(\mu, \sigma^{2}\right)$ with μ unknown.
(a) Find a $90 \% z$ confidence interval for μ, given that $\sigma=2$.

For the remaining parts, suppose σ is unknown.
(b) Find a $90 \% t$ confidence interval for μ.
(c) Find a $90 \% \chi^{2}$ confidence interval for σ^{2}.
(d) Find a $90 \% \chi^{2}$ confidence interval for σ.
(e) Given a normal sample with $n=100, \bar{x}=12$, and $s=5$, find the rule-of-thumb 95% confidence interval for μ.

Problem 2. Confidence intervals and non-rejection regions
Suppose $x_{1}, \ldots, x_{n} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ with σ known.
Consider two intervals:

1. The z confidence interval around \bar{x} at confidence level $1-\alpha$.
2. The z non-rejection region for $H_{0}: \mu=\mu_{0}$ at significance level α.

Compute and sketch these intervals to show that:

$$
\mu_{0} \text { is in the first interval } \Leftrightarrow \bar{x} \text { is in the second interval. }
$$

Problem 3. Polling

For a poll to find the proportion θ of people supporting X we know that a $(1-\alpha)$ confidence interval for θ is given by

$$
\left[\bar{x}-\frac{z_{\alpha / 2}}{2 \sqrt{n}}, \bar{x}+\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right] .
$$

(a) How many people would you have to poll to have a margin of error of 0.01 with 95% confidence? (You can do this in your head.)
(b) How many people would you have to poll to have a margin of error of 0.01 with 80% confidence. (You'll want R or other calculator here.)
(c) If $n=900$, compute the 95% and 80% confidence intervals for θ.

Discussion questions

1. Width of confidence intervals

The quantities $n, c=$ confidence, \bar{x}, σ all appear in the z confidence interval for the mean.
How does the width of a confidence interval for the mean change if:

1. We increase n and leave the others unchanged?
2. We increase c and leave the others unchanged?
3. We increase μ and leave the others unchanged?
4. We increase σ and leave the others unchanged?
(A) it gets wider (B) it gets narrower
(C) it stays the same.

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

