## Class 22 in-class problems, 18.05, Spring 2022

## Concept questions

## Concept question 1. Critical values



1. $z_{0.025}=$

$$
\begin{array}{lllll}
\text { (a) }-1.96 & \text { (b) }-0.95 & \text { (c) } 0.95 & \text { (d) } 1.96 & \text { (e) } 2.87
\end{array}
$$

2. $-z_{0.16}=$
(a) -1.33
(b) -0.99
(c) 0.99
(d) 1.33
(e) 3.52
3. Solution: $z_{0.025}=1.96$. By definition $P\left(Z>z_{0.025}\right)=0.025$. This is the same as $P\left(Z \leq z_{0.025}\right)=0.975$. Either from memory, a table or using the R function qnorm ( 0.975 ) we get the result.
2.Solution: $-z_{0.16}=-0.99$. We recall that $P(|Z|<1) \approx 0.68$. Since half the leftover probability is in the right tail we have $P(Z>1) \approx 0.16$. Thus $z_{0.16} \approx 1$, so $-z_{0.16} \approx-1$.

## Board questions

## Problem 1. Computing confidence intervals

The data 4, 1, 2, 3 is drawn from $N\left(\mu, \sigma^{2}\right)$ with $\mu$ unknown.
(a) Find a 90\% z confidence interval for $\mu$, given that $\sigma=2$.

For the remaining parts, suppose $\sigma$ is unknown.
(b) Find a $90 \% t$ confidence interval for $\mu$.
(c) Find a $90 \% \chi^{2}$ confidence interval for $\sigma^{2}$.
(d) Find a 90\% $\chi^{2}$ confidence interval for $\sigma$.
(e) Given a normal sample with $n=100, \bar{x}=12$, and $s=5$,
find the rule-of-thumb $95 \%$ confidence interval for $\mu$.
Solution: $\bar{x}=2.5, s^{2}=1.667, s=1.29, \sigma / \sqrt{n}=1, s / \sqrt{n}=0.645$.
(a) $z_{0.05} \approx 1.645: 90 \% z$ confidence interval for $\mu$ is

$$
\left[\bar{x}-z_{0.05} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{0.05} \cdot \frac{\sigma}{\sqrt{n}}\right] \approx[0.856,4.144]=2.5 \pm 1.645
$$

(b) $t_{0.05} \approx 2.353$ (3 degrees of freedom) : $90 \% t$ confidence interval for $\mu$ is

$$
\left[\bar{x}-t_{0.05} \cdot \frac{s}{\sqrt{n}}, \bar{x}+t_{0.05} \cdot \frac{s}{\sqrt{n}}\right] \approx[0.981,4.019]=2.5 \pm 1.519
$$

(c) $c_{0.05} \approx 7.815, c_{0.95} \approx 0.352$ ( 3 degrees of freedom): $90 \% \chi^{2}$ confidence interval for $\sigma^{2}$ is

$$
\left[\frac{(n-1) s^{2}}{c_{0.05}}, \frac{(n-1) s^{2}}{c_{0.95}}\right] \approx[0.640,14.211] .
$$

(d) Take the square root of the interval in 3. [0.780, 3.770].
(e) The rule of thumb is written for $z$, but with $n=100$ the $t(99)$ and standard normal distributions are very close, so we can assume that $t_{0.025} \approx 2$. Thus the $95 \%$ confidence interval is $12 \pm 2 \cdot 5 / 10=[11,13]$.

## Problem 2. Confidence intervals and non-rejection regions

Suppose $x_{1}, \ldots, x_{n} \sim N\left(\mu, \sigma^{2}\right)$ with $\sigma$ known.
Consider two intervals:

1. The $z$ confidence interval around $\bar{x}$ at confidence level $1-\alpha$.
2. The $z$ non-rejection region for $H_{0}: \mu=\mu_{0}$ at significance level $\alpha$.

Compute and sketch these intervals to show that:

$$
\mu_{0} \text { is in the first interval } \Leftrightarrow \bar{x} \text { is in the second interval. }
$$

## Solution:

Confidence interval: $\quad \bar{x} \pm z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}$
Non-rejection region: $\quad \mu_{0} \pm z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}$
Since the intervals are the same width they either both contain the other's center or neither one does.


## Problem 3. Polling

For a poll to find the proportion $\theta$ of people supporting $X$ we know that a $(1-\alpha)$ confidence interval for $\theta$ is given by

$$
\left[\bar{x}-\frac{z_{\alpha / 2}}{2 \sqrt{n}}, \bar{x}+\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right]
$$

(a) How many people would you have to poll to have a margin of error of 0.01 with $95 \%$ confidence? (You can do this in your head.)
(b) How many people would you have to poll to have a margin of error of 0.01 with $80 \%$ confidence. (You'll want $R$ or other calculator here.)
(c) If $n=900$, compute the $95 \%$ and $80 \%$ confidence intervals for $\theta$.

Solution: (a) Need $1 / \sqrt{n}=0.01$ So $n=10000$.
(b) $\alpha=0.2$, so $z_{\alpha / 2}=\operatorname{qnorm}(0.9)=1.2816$. So we need $\frac{z_{\alpha / 2}}{2 \sqrt{n}}=0.01$. This gives $n=4106$.
(c) $95 \%$ interval: $\bar{x} \pm \frac{1}{\sqrt{n}}=\bar{x} \pm \frac{1}{30}=\bar{x} \pm 0.0333$
$80 \%$ interval: $\bar{x} \pm z_{0.1} \cdot \frac{1}{2 \sqrt{n}}=\bar{x} \pm 1.2816 \cdot \frac{1}{60}=\bar{x} \pm 0.021$.

## Discussion questions

## 1. Width of confidence intervals

The quantities $n, c=$ confidence, $\bar{x}, \sigma$ all appear in the $z$ confidence interval for the mean.
How does the width of a confidence interval for the mean change if:

1. We increase $n$ and leave the others unchanged?
2. We increase c and leave the others unchanged?
3. We increase $\mu$ and leave the others unchanged?
4. We increase $\sigma$ and leave the others unchanged?
(A) it gets wider (B) it gets narrower (C) it stays the same.

Solution: 1. Narrower. More data decreases the variance of $\bar{x}$
2. Wider. Greater confidence requires a bigger interval.
3. No change. Changing $\mu$ will tend to shift the location of the intervals.
4. Wider. Increasing $\sigma$ will increase the uncertainty about $\mu$.

MIT OpenCourseWare
https://ocw.mit.edu

### 18.05 Introduction to Probability and Statistics

Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

