Class 23 in-class problems, 18.05, Spring 2022

Concept questions

Concept question 1. Overnight polling

During the presidential election season, pollsters often do 'overnight polls' and report a 'margin of error' of about $\pm 4 \%$.
The number of people polled is in which of the following ranges?
(a) $0-50$
(b) 50-100
(c) 100-500
(d) 300-600
(e) 600-1000

Solution: $4 \%=1 / 25$. So $25=\sqrt{n} \Rightarrow n=625$.

Board questions

Problem 1. Confidence intervals for a binomial
For a poll to find the proportion θ of people supporting X we know that a $(1-\alpha)$ confidence interval for θ is given by

$$
\left[\bar{x}-\frac{z_{\alpha / 2}}{2 \sqrt{n}}, \bar{x}+\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right] .
$$

(a) How many people would you have to poll to have a margin of error of 0.01 with 95% confidence? (You can do this in your head.)
(b) How many people would you have to poll to have a margin of error of 0.01 with 80% confidence. (You'll want R or other calculator here.)
(c) If $n=900$, compute the 95% and 80% confidence intervals for θ.

Solution: (a) Need $1 / \sqrt{n}=0.01$ So $n=10000$.
(b) $\alpha=0.2$, so $z_{\alpha / 2}=\operatorname{qnorm}(0.9)=1.2816$. So we need $\frac{z_{\alpha / 2}}{2 \sqrt{n}}=0.01$. This gives $n=4106$.
(c) Rule-of-thumb 95% interval: $\bar{x} \pm \frac{1}{\sqrt{n}}=\bar{x} \pm \frac{1}{30}=\bar{x} \pm 0.0333$.
80% interval: $\bar{x} \pm z_{0.1} \frac{1}{2 \sqrt{n}}=\bar{x} \pm 1.2816 \cdot \frac{1}{60}=\bar{x} \pm 0.021$.

Problem 2. Pivoting: confidence intervals and non-rejection regions

This question gets at the relationship between confidence intervals and non-rejection regions.
Main point: For a sample with sample mean \bar{x}, the confidence interval consists of all values μ for which a NHST with null hypothesis mean $=\mu$ would not reject on seeing \bar{x}.
Assume we have independent data $x_{1}, \ldots, x_{n} \sim N\left(\mu, \sigma^{2}\right)$, where μ is unknown and σ is known.
(a) For null hypothesis $\mu=\mu_{0}$ give the two-sided non-rejection region for significance level α.
(b) Call the data average \bar{x}. Give the $1-\alpha$ confidence interval for μ.
(c) Use the \bar{x}, μ-plane below. Note the conveniently included guides.
(i) Plot the horizontal line segment at height μ_{0} showing the non-rejection region for H_{0} : $\mu=\mu_{0}$ (significance level $=\alpha$).
(ii) Plot the horizontal line segment at other heights showing the non-rejection region for the corresponding μ.
(iii) Plot the vertical line segments showing the $1-\alpha$ confidence intervals around \bar{x}_{1} and \bar{x}_{2} (iv) Plot the vertical line segment at other values of \bar{x} showing the corresponding confidence interval.

Understand how the main point connects with your graph.
Solution: (a) $\left[\mu_{0}-\frac{z_{\alpha / 2} \sigma}{\sqrt{n}}, \mu_{0}+\frac{z_{\alpha / 2} \sigma}{\sqrt{n}}\right]$.
(b) $\left[\bar{x}-\frac{z_{\alpha / 2} \sigma}{\sqrt{n}}, \bar{x}+\frac{z_{\alpha / 2} \sigma}{\sqrt{n}}\right]$.
(c)

Both horizontal and vertical segments run between the same guides. So, every μ in the confidence interval for \bar{x} has \bar{x} in its non-rejection region. That is, the confidence interval consists of all μ that would not reject on seeing data \bar{x}.
Said differently, if the horizontal non-rejection region based on μ intersects the vertical confidence interaval based on \bar{x}. Then both of the following statements are true.

1. \bar{x} is in the non-rejection region (based on μ).
2. μ is in the confidence interval (based on \bar{x}).

For example, \bar{x}_{1} is in the non-rejection region for μ_{0} and μ_{0} is in the confidence interval for \bar{x}_{1}. Likewise μ_{0} and \bar{x}_{2} are not in each other's intervals.

Problem 3. Exact binomial confidence interval
This was not used in class, but it is a nice problem, so we included it here. Use this table of binomial $(8, \theta)$ probabilities to:

1. find the (two-sided) rejection region with significance level 0.10 for each value of θ.
2. Given $x=7$, find the 90% confidence interval for θ.
3. Repeat for $x=4$.

$\theta \backslash x$	0	1	2	3	4	5	6	7	8
0.1	0.430	0.383	0.149	0.033	0.005	0.000	0.000	0.000	0.000
0.3	0.058	0.198	0.296	0.254	0.136	0.047	0.010	0.001	0.000
0.5	0.004	0.031	0.109	0.219	0.273	0.219	0.109	0.031	0.004
0.7	0.000	0.001	0.010	0.047	0.136	0.254	0.296	0.198	0.058
0.9	0.000	0.000	0.000	0.000	0.005	0.033	0.149	0.383	0.430

Solution: For each θ, the non-rejection region is blue, the rejection region is orange. In each row, the rejection region has probability at most $\alpha=0.10$.

$\theta \backslash x$	0	1	2	3	4	5	6	7	8
0.1	0.430	0.383	0.149	0.033	0.005	0.000	0.000	0.000	0.000
0.3	0.058	0.198	0.296	0.254	0.136	0.047	0.010	0.001	0.000
0.5	0.004	0.031	0.109	0.219	0.273	0.219	0.109	0.031	0.004
0.7	0.000	0.001	0.010	0.047	0.136	0.254	0.296	0.198	0.058
0.9	0.000	0.000	0.000	0.000	0.005	0.033	0.149	0.383	0.430

For $x=7$ the 90% confidence interval for θ is $[0.7,0.9]$. These are the values of θ we wouldn't reject as null hypotheses. They are the blue entries in the $x=7$ column.
For $x=4$ the 90% confidence interval for θ is $[0.3,0.7]$.
Problem 4. Pivoting: Chi square confidence intervals for variance
This was not used in class, but it is a nice problem, so we included it here.
Assume we have independent data $x_{1}, \ldots, x_{n} \sim N\left(\mu, \sigma_{\text {true }}^{2}\right)$, where $\sigma_{\text {true }}$ is unknown and our parameter of interest.
Let s^{2} be the sample variance. We know that $\frac{(n-1) s^{2}}{\sigma_{\text {true }}^{2}} \sim \chi^{2}(n-1)$. Thus,

$$
P\left(\left.c_{1-\alpha / 2} \leq \frac{(n-1) s^{2}}{\sigma^{2}} \leq c_{\alpha / 2} \right\rvert\,, \sigma_{\text {true }}=\sigma\right)=1-\alpha .
$$

Here, $c_{\alpha / 2}$ is the right critical point for the $\chi^{2}(n-1)$ distribution.
Using this, for a two-sided significance test with with $H_{0}: \sigma_{\text {true }}=\sigma$, the non-rejection region for s^{2} at significance level α is

$$
\frac{c_{1-\alpha / 2} \sigma^{2}}{n-1} \leq s^{2} \leq \frac{c_{\alpha / 2} \sigma^{2}}{n-1}
$$

Pivoting, we get the $1-\alpha$ confidence interval for σ^{2} produced by the data is

$$
\frac{(n-1) s^{2}}{c_{\alpha / 2}} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{c_{1-\alpha / 2}}
$$

Display this graphically on the $\sigma^{2}-s^{2}$ axes shown.

Solution: In the graph below, the blue horizontal segements at height σ^{2} is the nonrejection region for $H_{0}: \sigma_{\text {true }}^{2}=\sigma^{2}$, i.e. it is a range of s^{2}. The vertical orange segment over s^{2} is the confidence interval produced by data s^{2}.

The horizontal and vertical segments run between the same guides -this is the geometric
meaning of pivoting. Pivoting is seen algebraically by changing the formulas for the guides from s^{2} as a function of σ^{2} to σ^{2} as a function of s^{2}.
So, the confidence interval produced by data s^{2} consists of all σ^{2} for which the null hypothesis $\sigma_{\text {true }}^{2}=\sigma^{2}$ will not reject (upon seeing the data s^{2}).
Said differently, if the horizontal non-rejection region based on $H_{0}: \sigma_{\text {true }}^{2}=\sigma^{2}$ intersects the vertical confidence interval based on s^{2}. Then both of the following statements are true.

1. s^{2} is in the non-rejection region (based on $H_{0}: \sigma_{\text {true }}^{2}=\sigma^{2}$).
2. σ^{2} is in the confidence interval (based on data s^{2}).

For example, s_{1}^{2} is in the non-rejection region for $H_{0}: \sigma_{\text {true }}^{2}=\sigma_{0}^{2}$ and σ_{0}^{2} is in the confidence interval produced by data s_{1}^{2}. Likewise σ_{0}^{2} and s_{2}^{2} are not in each other's intervals.

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

