Concept questions

Concept question 1. Which stat is easiest

Consider finding bootstrap confidence intervals for

I. the mean
II. the median
III. 47th percentile.

Which is easiest to find?

(a) I
(b) II
(c) III
(d) I and II
(e) II and III
(f) I and III
(g) I and II and III

Solution: (g) The program is essentially the same for all three statistics. All that needs to change is the code for computing the specific statistic.

Board questions

Problem 1. Empirical bootstrap

Data: 3 8 1 8 3 3

Bootstrap samples (each column is one bootstrap trial):

\[
\begin{array}{cccccccc}
8 & 8 & 1 & 8 & 3 & 8 & 3 & 1 \\
1 & 3 & 3 & 1 & 3 & 8 & 3 & 3 \\
3 & 1 & 1 & 8 & 1 & 3 & 3 & 8 \\
8 & 1 & 3 & 1 & 3 & 8 & 8 & 8 \\
3 & 3 & 1 & 8 & 8 & 3 & 8 & 3 \\
3 & 8 & 8 & 3 & 8 & 3 & 1 & 1 \\
\end{array}
\]

(a) Compute a bootstrap 80% percentile confidence interval for the mean.

(b) Compute a bootstrap 80% percentile confidence interval for the median.

(a) Solution: \(\bar{x} = 4.33 \)

\(\bar{x}^* \): 4.33, 4.00, 2.83, 4.83, 4.33, 4.67, 4.33, 4.00

Sorted \(\bar{x} \): 2.83, 4.00, 4.00, 4.33, 4.33, 4.33, 4.67, 4.83

So (quantiles), \(\bar{x}_{0.1}^* = 3.65 \), \(\bar{x}_{0.9}^* = 4.72 \).

(For \(\bar{x}_{0.1}^* \) we interpolated between the bottom two values. Likewise for \(\bar{x}_{0.9}^* \). There are other reasonable choices. In R see the quantile() function.)

80% percentile bootstrap CI for mean: [3.65, 4.72].

(b) Solution: \(m = \text{median}(x) = 3 \)

\(m^* \): 3.0, 3.0, 2.0, 5.5, 3.0, 3.0, 3.0, 3.0

Sorted \(m^* \): 2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 5.5

(For \(m_{0.1}^* \) we interpolated between the top two values –there are other reasonable choices. In R see the quantile() function.)
80% bootstrap CI for median: $[2.7, 3.75]$.

Problem 2. Parametric bootstrap

Data is taken from a Binomial$(8, \theta)$ distribution. After 6 trials, the results are

$6 5 5 5 7 4$

(a) Estimate θ.

(b) Write out the R code to generate data of 100 parametric bootstrap samples and compute an 80% confidence interval for θ.

(Try this without looking at your notes.)

(a) **Solution:** There are $n = 6$ data points. The MLE for θ is given by

$$\frac{\text{sum of data}}{n \cdot 8} = \frac{32}{48} = \frac{2}{3}.$$

Here are the details done abstractly to verify the formula used above. The likelihood for one trial getting k is

$$P(k \mid \theta) = \binom{8}{k} \theta^k (1 - \theta)^{8-k}.$$

So the likelihood over n trials with data k_1, \ldots, k_n is the product of the individual likelihoods

$$L(\theta) = c \theta^{\sum_{i=1}^{n} k_i} (1 - \theta)^{\sum_{i=1}^{n} (8 - k_i)}$$

Here we rolled all the binomial coefficients into one constant called c.

As usual, we look at the log likelihood

$$l(\theta) = \ln(c) + \left(\sum_{i=1}^{n} k_i\right) \ln(\theta) + \left(\sum_{i=1}^{n} (8 - k_i)\right) \ln(1 - \theta).$$

Taking the derivative and setting it equal to zero we get

$$l'(\theta) = \frac{\sum_{i=1}^{n} k_i}{\theta} - \frac{\sum_{i=1}^{n} (n - k_i)}{1 - \theta} = 0 \Rightarrow \hat{\theta} = \frac{\sum_{i=1}^{n} k_i}{\sum_{i=1}^{n} 8} = \frac{\sum_{i=1}^{n} k_i}{n \cdot 8}.$$

This is what we claimed at the start of the answer.

(b) **Solution:** Here’s the code with comments

```r
data = c(6, 5, 5, 5, 7, 3)
size_binom = 8
n = length(data)
theta_hat = sum(data)/(n*size_binom) # from part a

n = length(sample) # number of sample points
# Generate the bootstrap samples using binom(size_binom, theta_hat)
# Each column is one bootstrap sample (of n resampled values)
n_boot = 100
```
x = rbinom(n*n_boot, size_binom, theta_hat)
bootstrap_sample = matrix(x, nrow=n, ncol=n_boot)

Compute the bootstrap theta_star
theta_star = colSums(bootstrap_sample)/(n*size_binom)

Compute the differences
delta_star = theta_star - theta_hat

Find the 0.10 and 0.90 quantiles for delta_star
d = quantile(delta_star, c(0.1, 0.9))

Calculate the 80% confidence interval for theta
ci = theta_hat - c(d[2], d[1])

s = sprintf("80%% confidence interval for theta: [%.3f, %.3f]", ci[1], ci[2])
cat(s, '\n')
MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics
Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.