Class 24 in-class problems, 18.05, Spring 2022

Concept questions

Concept question 1. Which stat is easiest

Consider finding bootstrap confidence intervals for

 I. the mean
 II. the median
 III. 47th percentile.

 Which is easiest to find?
 (a) I
 (b) II
 (c) III
 (d) I and II

 (e) II and III
 (f) I and III
 (g) I and II and III

Solution: (g) The program is essentially the same for all three statistics. All that needs to change is the code for computing the specific statistic.

Board questions

Problem 1. Empirical bootstrap

Data: 3 8 1 8 3 3

Bootstrap samples (each column is one bootstrap trial):

8	8	1	8	3	8	3	1
1	3	3	1	3	8	3	3
3	1	1	8	1	3	3	8
8	1	3	1	3	3	8	8
3	3	1	8	8	3	8	3
3	8	8	3	8	3	1	1

(a) Compute a bootstrap 80% percentile confidence interval for the mean.

(b) Compute a bootstrap 80% percentile confidence interval for the median.

(a) Solution: $\overline{x} = 4.33$

 \overline{x}^* : 4.33, 4.00, 2.83, 4.83, 4.33, 4.67, 4.33, 4.00

Sorted

 \overline{x}^* : 2.83, 4.00, 4.00, 4.33, 4.33, 4.33, 4.67, 4.83

So (quantiles), $\overline{x}_{0.1}^* = 3.65$, $\overline{x}_{0.9}^* = 4.72$.

(For $\overline{x}_{0.1}^*$ we interpolated between the bottom two values. Likewise for $\overline{x}_{0.9}^*$. There are other reasonable choices. In R see the quantile() function.)

80% percentile bootstrap CI for mean: [3.65, 4.72].

(b) Solution: m = median(x) = 3

 m^* : 3.0, 3.0, 2.0, 5.5, 3.0, 3.0, 3.0, 3.0

Sorted m^* : 2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 5.5

(For $m_{0.1}^*$ we interpolated between the top two values –there are other reasonable choices. In R see the quantile() function.) 80% bootstrap CI for median: [2.7, 3.75].

Problem 2. Parametric bootstrap

Data is taken from a Binomial(8, θ) distribution. After 6 trials, the results are

6 5 5 5 7 4

(a) Estimate θ .

(b) Write out the R code to generate data of 100 parametric bootstrap samples and compute an 80% confidence interval for θ .

(Try this without looking at your notes.)

(a) Solution: There are n = 6 data points. The MLE for θ is given by

$$\frac{\text{sum of data}}{n \cdot 8} = \frac{32}{48} = \frac{2}{3}.$$

Here are the details done abstractly to verify the formula used above. The likelihood for one trial getting k is

$$P(k \mid \theta) = \binom{8}{k} \theta^k (1 - \theta)^{8-k}.$$

So the likelihood over n trials with data k_1, \ldots, k_n is the product of the individual likelihoods

$$L(\theta) = c\theta^{\sum_{i=1}^{n}k_i}(1-\theta)^{\sum_{i=1}^{n}(8-k_i)}$$

Here we rolled all the binomial coefficients into one constant called c.

As usual, we look at the log likelihood

$$l(\theta) = \ln(c) + \left(\sum_{i=1}^{n} k_i\right) \ln(\theta) + \left(\sum_{i=1}^{n} (8-k_i)\right) \ln(1-\theta).$$

Taking the derivative and setting it equal to zero we get

$$l'(\theta) = \frac{\sum k_i}{\theta} - \frac{\sum (n-k_i)}{1-\theta} = 0 \implies \hat{\theta} = \frac{\sum_{i=1}^n k_i}{\sum_{i=1}^n 8} = \frac{\sum k_i}{n \cdot 8}.$$

This is what we claimed at the start of the answer.

n = length(sample) # number of sample points

(b) Solution: Here's the code with comments

```
data = c(6, 5, 5, 5, 7, 3)
size_binom = 8
n = length(data)
theta_hat = sum(data)/(n*size_binom) # from part a
```

```
# Generate the bootstrap samples using binom(size_binom, theta_hat)
# Each column is one bootstrap sample (of n resampled values)
n_boot = 100
```

```
x = rbinom(n*n_boot, size_binom, theta_hat)
bootstrap_sample = matrix(x, nrow=n, ncol=n_boot)
# Compute the bootstrap theta_star
theta_star = colSums(bootstrap_sample)/(n*size_binom)
# Compute the differences
delta_star = theta_star - theta_hat
# Find the 0.10 and 0.90 quantiles for delta_star
d = quantile(delta_star, c(0.1, 0.9))
# Calculate the 80% confidence interval for theta
ci = theta_hat - c(d[2], d[1])
s = sprintf("80%% confidence interval for theta: [%.3f, %.3f]", ci[1], ci[2])
cat(s, '\n')
```

MIT OpenCourseWare https://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.