
18.05 Exam 1 Solutions 

Problem 0. (5 pts) Be sure to attach your cheat sheet to your test. 

Problem 1. (10 pts: 4,6) Concept/Quick questions 
(a) (No explanations are necessary.) 
The plot shows the pdf for three independent random variables 𝑋, 𝑌 , 𝑊 . All use the same 
horizontal and vertical scale. 

𝑓𝑋

𝑓𝑌

𝑓𝑊

Which random variable has the greatest variance? 

Solution: 𝑋.(Variance measures the spread away from the mean.) 

(b) Suppose 𝐴 and 𝐵 are two events and 𝑃 (𝐴) = 0.7, 𝑃 (𝐵) = 0.3 and 𝑃(𝐴 ∩ 𝐵) = 0.25. 
Compute each of the following 

(i) Compute 𝑃(𝐴 ∪ 𝐵) 

(ii) Compute 𝑃 (𝐴|𝐵). 
Solution: (i) Inclusion exclusion: 𝑃(𝐴 ∪ 𝐵) = 0.7 + 0.3 − 0.25 = 0.75. 
(ii) 𝑃 (𝐴|𝐵) = 𝑃 (𝐴∩𝐵) = 0.25

𝑃 (𝐵) 0.3 . 

Problem 2. (15 pts: 10,5) 
You create passwords as a string of 10 characters such that: 

• 5 of the characters are letters (upper and lower case, i.e. 52 characters) with repetitions 
allowed, 

• 3 are numbers { 0,1,2,3,4,5,6,7,8,9 } with repetitions allowed, and 

• 2 are distinct symbols from the list of 5 symbols: { !, @, #, $, & }. 

(a) How many passwords are there? (No need to simplify your answer.) 

Solution: First, choose the locations of the symbols (10
2 ). 

Then choose the symbols, since they have to be different and order matters, we get 5 ⋅ 4. 
Then, choose the locations of the letters: (8

5). 
Then count the number of ways to choose 5 letters (with replacement) 525. 
Then choose the locations of the numbers: (3

3) = 1. 
Finally choose the numbers: 103. 

So, the number of passwords (10
2 ) ⋅ (5

8) ⋅ 20 ⋅ 103 ⋅ 525. 
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(b) With all locations for symbols, letters, or numbers in your 10 character password being 
equally likely, what is the probability that the two symbols are next to each other? 

Solution: Count the ways to get a password where the two symbols are adjacent: 
First choose locations for the two symbols: there are 9 adjacent positions. 
Then there are 5 ⋅ 4 ways to choose the sequence of two symbols. 
Then choose the locations of the letters: (8

5). 

Then count the number of ways to choose 5 upper or lower case letters (with replacement) 
525. 
Then choose the locations of the numbers: (3

3). 

Then choose the numbers: 103. 

9 ⋅ (5
8) ⋅ 5 ⋅ 4 ⋅ 103 ⋅ 525 9 2So, 𝑃 (two adjacent symbols) = = (10

2 ) ⋅ (8
5) ⋅ 5 ⋅ 4 ⋅ 103 ⋅ 525 (10

2 ) 
= 10 

Problem 3. (25 pts: 10,5,5,5) 
You have 5 four-sided and 3 six-sided dice. You put them in a cup, choose one at random, 
roll the die, and report the result. 
Let 𝐷 be the number of sides on the chosen die and let 𝑅 be the result of the roll. 
(a) Make a joint probability table for 𝐷 and 𝑅. Be sure to include the marginal probabilities 
for 𝐷 and 𝑅. 
Solution: Each element of the table is simply the probability of getting a die with the 
indicated number of sides and then rolling the indicated number. For example,

1 3 1𝑃(𝑅 = 3 and 𝐷 = 6) = 𝑃(𝑅 = 3|𝐷 = 6)𝑃(𝐷 = 6) = ⋅ =6 8 16. 

𝑅\𝐷 4-sided 6-sided 

1 5/32 1/16 7/32 
2 5/32 1/16 7/32 
3 5/32 1/16 7/32 
4 5/32 1/16 7/32 
5 0 1/16 1/16 
6 0 1/16 1/16 

5/8 3/8 

(b) What is the probability of rolling a 3? 

Solution: This is the sum of the entries in the 𝑅 = 3 row of the table: 
5/32 + 1/16 = 7/32 

(Do you see why this has to be between 1/6 and 1/4?) 

(c) Compute 𝑃(𝐷 = 4|𝑅 = 3). 
Solution: We compute this as the fraction 

𝑃(𝐷 = 4 and 𝑅 = 3) 5/32=𝑃 (𝑅 = 3) 7/32 
= 5/7. 
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(d) Are 𝐷 and 𝑅 independent? 

Solution: No, the joint probabilities in the table are not the products of the marginal 
probabilities. The easiest way to see this is to note that 𝑃(𝑅 = 6 and 𝐷 = 4) = 0, which 
does not equal 𝑃 (𝑅 = 6)𝑃 (𝐷 = 4) = 5/128. 

Problem 4. (10 pts) 
A quick screening test for a certain disease has three outcomes: positive, negative and 
uncertain. Suppose it has the following percentages. 
For someone with the disease: positive 70%, negative 10%, uncertain 20%. 
For someone without the disease: positive 10%, negative 60%, uncertain 30%. 
Suppose also, that the prevalence of the disease in the population is 2%. 
What is the probability that a random person who tests positive has the disease? 

Solution: We organize the problem in a tree. Here: 𝐷+ = has disease, 𝐷− = does not 
have disease; 𝑇 + = test is positive, other = test is negative or uncertain. 

𝐷+ 𝐷−

𝑇 + other 𝑇 + other

0.02 0.98

0.7 0.3 0.1 0.9

𝑃 (𝑇 +|𝐷+)𝑃 (𝐷+) 0.7 ⋅ 0.02 14 1𝑃 (𝐷+|𝑇 +) = = 8 
= 0.125 .𝑃 (𝑇 +) 0.7 ⋅ 0.02 + 0.1 ⋅ 0.98 

= 112 
= 

Problem 5. (25 pts: 5,5,5,5,5) 
Two students, Xeno and Yolanda are meeting up for lunch. They plan on a time to meet 
at noon. Both have class before so neither will be early. Both have class that starts at 1pm, 
so they will both arrive between 0 and 1 hour late. Let 𝑋 be the time in hours that Xeno 
arrives late and let 𝑌 be the time in hours that Yolanda arrives late. 
Assume that the joint pdf of these random variables is 𝑓(𝑥, 𝑦) = 5/4 − 𝑥𝑦. 
(a) Find the two marginal pdfs. 
Solution: To find the marginals we ‘integrate out’ the other variable. 

𝑓𝑋(𝑥) = ∫
1

𝑓(𝑥, 𝑦) 𝑑𝑦 = ∫
1

5/4 − 𝑥𝑦 𝑑𝑦 = 5/4 − 𝑥/2. 
0 0 

𝑓𝑌 (𝑦) = ∫
1

𝑓(𝑥, 𝑦) 𝑑𝑥 = ∫
1

5/4 − 𝑥𝑦 𝑑𝑥 = 5/4 − 𝑦/2. 
0 0 

We could have used symmetry to deduce 𝑓𝑌 (𝑦) without any integration. 
(b) Are 𝑋 and 𝑌 independent? 

Solution: Since the joint pdf is not the product of the marginals, i.e. 𝑓(𝑥, 𝑦) ≠ 𝑓𝑋(𝑥)𝑓𝑌 (𝑦),
𝑋 and 𝑌 are not independent. 
(c) Find 𝐸[𝑋], Var(𝑋). (For these, you need to simplify the fractions.) 
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Solution: We compute both 𝐸[𝑋] and Var(𝑋) = 𝐸[𝑋2] − 𝐸[𝑋]2 using the marginal pdf 
𝑓𝑋(𝑋) found in part (a). 

1 1 5 11𝐸[𝑋] = ∫ 𝑥𝑓𝑋(𝑥) 𝑑𝑥 = ∫ 5𝑥/4 − 𝑥2/2 𝑑𝑥 = 8 − 1 
6 = 24. 

0 0
1 1

𝐸[𝑋2] = ∫ 𝑥2𝑓𝑋(𝑥) 𝑑𝑥 = ∫ 5𝑥2/4 − 𝑥3/2 𝑑𝑥 = 
5 

8 
= 

7 
12 − 1 

24. 
0 0 

7 472 =Var(𝑋) = 𝐸[𝑋2] − 𝐸[𝑋] 24 
− 

112 

= .242 242 

(d) Compute the covariance Cov(𝑋, 𝑌 ) and correlation Cor(𝑋, 𝑌 ). 
Hint: By symmetry you know the mean and variance of 𝑌 are the same as those for 𝑋. 
For this part, there is no need to simplify fractions. 
Solution: By symmetry, we know 𝐸[𝑌 ] = 𝐸[𝑋] = 11/24 and Var(𝑌 ) = Var(𝑋) = 47/242. 
We use the formula Cov(𝑋, 𝑌 ) = 𝐸[𝑋𝑌 ] − 𝐸[𝑋]𝐸[𝑌 ]. 

1 1 1 1
𝐸[𝑋𝑌 ] = ∫ ∫ 𝑥𝑦𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = ∫ ∫ 5𝑥𝑦/4 − 𝑥2𝑦2 𝑑𝑥 = 

5 
9 

= 
29 

16 − 1 
144. 

0 0 0 0 

29 29 121 5Cov(𝑋, 𝑌 ) = 𝐸[𝑋𝑌 ] − 𝐸[𝑋]𝐸[𝑌 ] = =144 − 11
24

2

2 144 − 144 ⋅ 4 = −144 ⋅ 4 

Cov(𝑋, 𝑌 ) Cov(𝑋, 𝑌 ) −5/242 −5Cor(𝑋, 𝑌 ) = = = =47/242 47/242 47𝜎𝑋𝜎𝑌 

(e) Set up, but do not compute an expression computing the probability that Xeno and 
Yolanda arrive within 6 minutes (0.1 hours) of each other and that Yolanda arrives after 
Xeno. 
Your integral will be over a region 𝑅 in the unit square. You can leave your integral in the 

form ∬ ℎ(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 and show 𝑅 in a figure elsewhere on the page. The function ℎ(𝑥, 𝑦) 
𝑅

must be specified completely. 

Solution: The integral is ∬ 𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = ∬ 5/4 − 𝑥𝑦 𝑑𝑥 𝑑𝑦. 
𝑅 𝑅 

The region 𝑅 is the part of the unit square where 𝑋 < 𝑌 and 𝑌 − 𝑋 < 0.1. This is the 
strip of the triangle shown in the picture 

𝑥

𝑦

1

1
𝑅 (𝑋 < 𝑌 < 𝑋 + 0.1)
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This was not asked for, but using 18.02 we get 

0.9 𝑥+0.1 1 1
𝑃 (𝑋 < 𝑌 < 𝑋 + 0.1) = ∫ ∫ 5/4 − 𝑥𝑦 𝑑𝑦 𝑑𝑥 + ∫ ∫ 5/4 − 𝑥𝑦 𝑑𝑦 𝑑𝑥 

0 𝑥 0.9 𝑥 

Problem 6. (10 pts) 
A company manufactures solar panels. When homeowners install the panels, the state pays 
50% of the cost. Because this subsidy is about to expire, the company wants to manufacture 
as many panels as it can in the next 20 days. 
For a variety of reasons the number of panels it can manufacture in a day is a random variable 
with each day independent of the others. Suppose the daily output follows a so-called gamma 

distribution. The pdf of this distribution is not that complicated (𝑓(𝑥) = 
𝑥
10
4 

10 
e−𝑥/100),4! ⋅ 

but we’ll let Wikipedia tell us the mean and variance: mean = 500, variance = 5 ⋅ 104. 
Estimate the probability that they will be able to manufacture more than 10,500 panels in 
the next 20 days. 
Solution: Let 𝑆 be the total manufactured in 20 days. The problem asks for 𝑃 (𝑆 > 10500). 
Since 𝑆 is a sum of 20 i.i.d. random variables, the central limit theorem tell us that it is 
approximately normal. We know that one day has mean 500 and variance 5 ⋅ 104. So 

𝐸[𝑆] = 20 ⋅ 500 = 10000 Var(𝑆) = 20 ⋅ 5 ⋅ 104 = 105 𝜎𝑆 = 103. 

Standardizing and using the CLT we get 

> 
10, 500 − 10, 000 𝑃(𝑆 > 10500) = 𝑃 (𝑆 − 10, 000 )1000 1000 

≈ 𝑃(𝑍 > 0.5) = 1 − 𝑃(𝑍 ≤ 0.5) ≈ 1 − 0.6915 = 0.3085 

The decimal answer came by looking up 𝑃 (𝑍 < 0.5) ≈ 0.6915 in the standard normal 
table. 



MIT OpenCourseWare 

https://ocw.mit.edu 

18.05 Introduction to Probability and Statistics 
Spring 2022 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu
https://ocw.mit.edu/terms

