z-test

- **Use:** Compare the data mean to an hypothesized mean.
- **Data:** \(x_1, x_2, \ldots, x_n\).
- **Assumptions:** The data are independent normal samples: \(x_i \sim N(\mu, \sigma^2)\) where \(\mu\) is unknown, but \(\sigma\) is known.
- **\(H_0\):** For a specified \(\mu_0\), \(\mu = \mu_0\).
- **\(H_A\):**
 - Two-sided: \(\mu \neq \mu_0\)
 - One-sided-greater: \(\mu > \mu_0\)
 - One-sided-less: \(\mu < \mu_0\)
- **Test statistic:**
 \[z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} \]
- **Null distribution:** \(\phi(z | H_0)\) is the pdf of \(Z \sim N(0, 1)\).
- **\(p\)-value:**
 - Two-sided:
 \[p = P(|Z| > z | H_0) = 2 \cdot (1 - \text{pnorm}(\text{abs}(z), 0, 1)) \]
 - One-sided-greater (right-sided):
 \[p = P(Z > z | H_0) = 1 - \text{pnorm}(z, 0, 1) \]
 - One-sided-less (left-sided):
 \[p = P(Z < z | H_0) = \text{pnorm}(z, 0, 1) \]
- **Critical values:** \(z_\alpha\) has right-tail probability \(\alpha\)
 \[P(z > z_\alpha | H_0) = \alpha \iff z_\alpha = \text{qnorm}(1 - \alpha, 0, 1). \]
- **Rejection regions:** let \(\alpha\) be the significance.
 - Right-sided rejection region: \([z_\alpha, \infty)\)
 - Left-sided rejection region: \((1 - \alpha, z_\alpha]\)
 - Two-sided rejection region: \((1 - \alpha, \text{qnorm}(1 - \alpha, 0, 1)) \cup [z_\alpha, \infty)\)

Alternate test statistic

- **Test statistic:** \(\bar{x}\)

- **Null distribution:** \(\phi(\bar{x} | H_0)\) is the pdf of \(\bar{X} \sim N(\mu_0, \sigma^2/n)\).
- **\(p\)-value:**
 - Two-sided:
 \[p = P(|\bar{X} - \mu_0| > |\bar{x} - \mu_0| | H_0) = 2 \cdot (1 - \text{pnorm}(\text{abs}((\bar{x} - \mu_0), 0, \sigma/\sqrt{n}))) \]
 - One-sided-greater: \(\mu > \mu_0\)
 \[p = P(\bar{X} > \bar{x}) = 1 - \text{pnorm}(\bar{x}, \mu_0, \sigma/\sqrt{n}) \]
 - One-sided-less:
 \[p = P(\bar{X} < \bar{x}) = \text{pnorm}(\bar{x}, \mu_0, \sigma/\sqrt{n}) \]
- **Critical values:** \(x_\alpha\) has right-tail probability \(\alpha\)
 \[P(X > x_\alpha | H_0) = \alpha \iff x_\alpha = \text{qnorm}(1 - \alpha, \mu_0, \sigma/\sqrt{n}) \]
- **Rejection regions:** let \(\alpha\) be the significance.
 - Right-sided rejection region: \([x_\alpha, \infty)\)
 - Left-sided rejection region: \((1 - \alpha, x_\alpha]\)
 - Two-sided rejection region: \((1 - \alpha, \text{qnorm}(1 - \alpha, \mu_0, \sigma/\sqrt{n})) \cup [x_\alpha, \infty)\)
One-sample t-test of the mean

- Use: Compare the data mean to an hypothesized mean.
- Data: $x_1, x_2, ..., x_n$.
- Assumptions: The data are independent normal samples:
 $x_i \sim N(\mu, \sigma^2)$ where both μ and σ are unknown.
- H_0: For a specified μ_0, $\mu = \mu_0$
- H_A:
 Two-sided: $\mu \neq \mu_0$
 one-sided-greater: $\mu > \mu_0$
 one-sided-less: $\mu < \mu_0$
- Test statistic:
 $$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}},$$
 where s^2 is the sample variance:
 $$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
- Null distribution: $\phi(t \mid H_0)$ is the pdf of $T \sim t(n-1)$.
 (Student t-distribution with $n-1$ degrees of freedom)
- p-value:
 Two-sided: $p = P(|T| > t) = 2(1 - pt(abs(t), n-1))$
 one-sided-greater: $p = P(T > t) = 1 - pt(t, n-1)$
 one-sided-less: $p = P(T < t) = pt(t, n-1)$
- Critical values: t_α has right-tail probability α
 $$P(T > t_\alpha \mid H_0) = \alpha \Leftrightarrow t_\alpha = qt(1 - \alpha, n-1).$$
- Rejection regions: let α be the significance.
 Right-sided rejection region: $[t_\alpha, \infty)$
 Left-sided rejection region: $(-\infty, t_{1-\alpha}]$
 Two-sided rejection region: $(-\infty, t_{1-\alpha/2}] \cup [t_{\alpha/2}, \infty)$

Two-sample t-test for comparing means (assuming equal variance)

- Use: Compare the means from two groups.
- Data: $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_m$.
- Assumptions: Both groups of data are independent normal samples:
 $$x_i \sim N(\mu_x, \sigma^2)$$
 $$y_j \sim N(\mu_y, \sigma^2)$$
 where both μ_x and μ_y are unknown and possibly different. The variance σ is unknown,
 but the same for both groups.
- H_0: $\mu_x = \mu_y$
- H_A:
 Two-sided: $\mu_x \neq \mu_y$
 one-sided-greater: $\mu_x > \mu_y$
 one-sided-less: $\mu_x < \mu_y$
Summary of NHST for 18.03, Spring 2022

- Test statistic: $t = \frac{\bar{x} - \bar{y}}{s_p}$,
 where s^2_x and s^2_y are the sample variances and s^2_p is (sometimes called) the pooled sample variance:

 $$s^2_p = \frac{(n - 1)s^2_x + (m - 1)s^2_y}{n + m - 2} \left(\frac{1}{n} + \frac{1}{m}\right)$$

- Null distribution: $\phi(t \mid H_0)$ is the pdf of $T \sim t(n + m - 2)$. (Student t-distribution with $n + m - 2$ degrees of freedom.)

- p-value:
 Two-sided: $p = P(|T| > t) = 2(1 - pt(abs(t), n+m-2))$
 one-sided-greater: $p = P(T > t) = 1 - pt(t, n+m-2)$
 one-sided-less: $p = P(T < t) = pt(t, n+m-2)$

- Critical values: t_α has right-tail probability α

 $$P(t > t_\alpha \mid H_0) = \alpha \iff t_\alpha = qt(1 - \alpha, n + m - 2).$$

- Rejection regions: let α be the significance.
 Right-sided rejection region: $[t_\alpha, \infty)$
 Left-sided rejection region: $(-\infty, t_{1-\alpha}]$
 Two-sided rejection region: $(-\infty, t_{1-\alpha/2}] \cup [t_{\alpha/2}, \infty)$

Notes: 1. Unequal variances. There is a form of the t-test for when the variances are not assumed equal. It is sometimes called Welch’s t-test. In the R function t.test, there is an argument var.equal. Setting it to FALSE runs the unequal variances version of the t-test.

2. When the data naturally comes in pairs (x_i, y_i), one uses the paired two-sample t-test. For example, in comparing two treatments, each patient receiving treatment 1 might be paired with a patient receiving treatment 2 who is similar in terms of stage of disease, age, sex, etc.

2 test for variance

- Use: Compare the data variance to an hypothesized variance.
- Data: x_1, x_2, \ldots, x_n.
- Assumptions: The data are independent normal samples:

 $x_i \sim N(\mu, \sigma^2)$ where both μ and σ are unknown.
- H_0: For a specified σ_0, $\sigma = \sigma_0$
- H_A:

 Two-sided: $\sigma \neq \sigma_0$
 one-sided-greater: $\sigma > \sigma_0$
 one-sided-less: $\sigma < \sigma_0$

- Test statistic: $X^2 = \frac{(n - 1)s^2}{\sigma^2_0}$, where s^2 is the sample variance:

 $$s^2 = \frac{1}{n - 1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
• Null distribution: \(\phi(X^2 | H_0) \) is the pdf of \(\chi^2 \sim \chi^2(n-1) \).
 (Chi-square distribution with \(n - 1 \) degrees of freedom)

• \(p \)-value:
 Because the \(\chi^2 \) distribution is not symmetric around zero the two-sided test is a little awkward to write down. The idea is to look at the \(X^2 \) statistic and see if it’s in the left or right tail of the distribution. The \(p \)-value is twice the probability in that tail.

 An easy check for which tail it’s in is: \(s^2/\sigma_0^2 > 1 \) (right tail) or \(s^2/\sigma_0^2 < 1 \) (left tail).

\[
\text{Two-sided: } p = \begin{cases}
2 \times P(\chi^2 > X^2) & \text{if } X^2 \text{ is in the right tail} \\
2 \times P(\chi^2 < X^2) & \text{if } X^2 \text{ is in the left tail}
\end{cases} = 2 \times \min(p\text{chisq}(X^2,n-1), 1-p\text{chisq}(X^2,n-1))
\]

\[
\text{one-sided-greater: } p = P(\chi^2 > X^2) = 1 - p\text{chisq}(X^2, n-1)
\]

\[
\text{one-sided-less: } p = P(\chi^2 < X^2) = p\text{chisq}(X^2, n-1)
\]

• Critical values: \(x_\alpha \) has right-tail probability \(\alpha \)

\[
P(\chi^2 > x_\alpha | H_0) = \alpha \iff x_\alpha = q\text{chisq}(1 - \alpha, n - 1).
\]

• Rejection regions: let \(\alpha \) be the significance.
 \(x_\alpha \) has right-tail probability \(\alpha \)

 Right-sided rejection region: \([x_\alpha, \infty)\)
 Left-sided rejection region: \((-\infty, x_{1-\alpha}]\)
 Two-sided rejection region: \((-\infty, x_{1-\alpha/2}] \cup [x_{\alpha/2}, \infty)\)

\(^2\) test for goodness of fit for categorical data

• Use: Test whether discrete data fits a specific finite probability mass function.

• Data: An observed count \(O_i \) in cell \(i \) of a table.

• Assumptions: None

• \(H_0 \): The data was drawn from a specific discrete distribution.

• \(H_A \): The data was drawn from a different distribution

• Test statistic: The data consists of observed counts \(O_i \) for each cell. From the null hypothesis probability table we get a set of expected counts \(E_i \). There are two statistics that we can use:

 \[
 \text{Likelihood ratio statistic } G = 2 \sum O_i \ln \left(\frac{O_i}{E_i} \right)
 \]

 \[
 \text{Pearson’s chi-square statistic } X^2 = \sum \frac{(O_i - E_i)^2}{E_i}.
 \]

It is a theorem that under the null hypothesis \(X^2 \approx G \) and both are approximately chi-square. Before computers, \(X^2 \) was used because it was easier to compute. Now, it is better to use \(G \) although you will still see \(X^2 \) used quite often.
• Degrees of freedom df: The number of cell counts that can be freely specified. In the case above, of the n cells $n - 1$ can be freely specified and the last must be set to make the correct total. So we have $df = n - 1$ degrees of freedom.

In other chi-square tests there can be more relations between the cell counts of df might be different from $n - 1$.

• Rule of thumb: Combine cells until the expected count in each cell is at least 5.

• Null distribution: Assuming H_0, both statistics (approximately) follow a chi-square distribution with df degrees of freedom. That is both $\phi(G \mid H_0)$ and $\phi(X^2 \mid H_0)$ have the approximately same pdf as $Y \sim \chi^2(df)$.

• p-value:
 \[p = P(Y > G) = 1 - \text{pchisq}(G, df) \]
 \[p = P(Y > X^2) = 1 - \text{pchisq}(X^2, df) \]

• Critical values: c_α has right-tail probability α
 \[P(Y > c_\alpha \mid H_0) = \alpha \iff c_\alpha = q\text{chisq}(1 - \alpha, df). \]

• Rejection regions: let α be the significance.
 We expect X^2 to be small if the fit of the data to the hypothesized distribution is good. So we only use a right-sided rejection region: $[c_\alpha, \infty)$.

One-way ANOVA (F-test for equal means)

• Use: Compare the data means from n groups with m data points in each group.

• Data:
 \[
x_{1,1}, x_{1,2}, \ldots, x_{1,m} \\
x_{2,1}, x_{2,2}, \ldots, x_{2,m} \\
\vdots \\
x_{n,1}, x_{n,2}, \ldots, x_{n,m}
\]

• Assumptions: Data for each group is an independent normal sample drawn from distributions with (possibly) different means but the same variance:
 \[
x_{1,j} \sim N(\mu_1, \sigma^2) \\
x_{2,j} \sim N(\mu_2, \sigma^2) \\
\vdots \\
x_{n,j} \sim N(\mu_n, \sigma^2)
\]

The group means μ_i are unknown and possibly different. The variance σ is unknown, but the same for all groups.

• H_0: All the means are identical $\mu_1 = \mu_2 = \ldots = \mu_n$.

• H_A: Not all the means are the same.

• Test statistic: $f = \frac{MS_B}{MS_W}$, where
\[\bar{x}_i = \text{mean of group } i = \frac{x_{i,1} + x_{i,2} + \ldots + x_{i,m}}{m}. \]
\[\overline{x} = \text{grand mean of all the data}. \]
\[s_i^2 = \text{sample variance of group } i = \frac{1}{m-1} \sum_{j=1}^{m} (x_{i,j} - \bar{x}_i)^2. \]
\[MS_B = \text{between group variance} = m \times \text{sample variance of group means} = \frac{m}{n-1} \sum_{i=1}^{n} (\bar{x}_i - \overline{x})^2. \]
\[MS_W = \text{average within group variance} = \frac{s_1^2 + s_2^2 + \ldots + s_n^2}{n}. \]

- Idea: If the \(\mu_i \) are all equal, this ratio should be near 1. If they are not equal then \(MS_B \) should be larger while \(MS_W \) should remain about the same, so \(f \) should be larger. We won’t give a proof of this.
- Null distribution: \(\phi(f \mid H_0) \) is the pdf of \(F \sim F(n-1, n(m-1)). \) This is the \(F \)-distribution with \(n-1 \) and \(n(m-1) \) degrees of freedom. Several \(F \)-distributions are plotted below.
- \(p \)-value: \(p = P(F > f) = 1 - \text{pf}(f, n-1, n*(m-1)) \)

Notes:
1. ANOVA tests whether all the means are the same. It does not test whether some subset of the means are the same.
2. There is a test where the variances are not assumed equal.
3. There is a test where the groups don’t all have the same number of samples.

\(F \)-test for equal variances

- Use: Compare the variances from two groups.
- Data: \(x_1, x_2, \ldots, x_n \) and \(y_1, y_2, \ldots, y_m. \)
- Assumptions: Both groups of data are independent normal samples:
 \[x_i \sim N(\mu_x, \sigma_x^2) \]
 \[y_j \sim N(\mu_y, \sigma_y^2) \]
where μ_x, μ_y, σ_x, and σ_y are all unknown.

- H_0: $\sigma_x = \sigma_y$
- H_A:
 - Two-sided: $\sigma_x \neq \sigma_y$
 - One-sided-greater: $\sigma_x > \sigma_y$
 - One-sided-less: $\sigma_x < \sigma_y$

- Test statistic: $f = \frac{s^2_x}{s^2_y}$
 where s^2_x and s^2_y are the sample variances of the data.
- Null distribution: $\phi(f \mid H_0)$ is the pdf of $F \sim F(n-1, m-1)$.
 (F-distribution with $n - 1$ and $m - 1$ degrees of freedom.)
- p-value:
 - Two-sided: $p = 2 \times \min(pf(f, n-1, m-1), 1 - pf(f, n-1, m-1))$
 - One-sided-greater: $p = P(F > f) = 1 - pf(f, n-1, m-1)$
 - One-sided-less: $p = P(F < f) = pf(f, n-1, m-1)$
- Critical values: f_α has right-tail probability α
 $P(F > f_\alpha \mid H_0) = \alpha \iff f_\alpha = qf(1 - \alpha, n - 1, m - 1)$.