Summary of NHST for 18.05 Jeremy Orloff and Jonathan Bloom

z-test

- Use: Compare the data mean to an hypothesized mean.
- Data: $x_1, x_2, ..., x_n$.
- Assumptions: The data are independent normal samples: $x_i \sim N(\mu, \sigma^2)$ where μ is unknown, but σ is known.
- H_0 : For a specified μ_0 , $\mu = \mu_0$.
- *H*_A:

Two-sided: $\mu \neq \mu_0$ one-sided-greater: $\mu > \mu_0$ one-sided-less: $\mu < \mu_0$

- Test statistic: $z = \frac{\overline{x} \mu_0}{\sigma / \sqrt{n}}$
- Null distribution: $\phi(z \mid H_0)$ is the pdf of $Z \sim N(0, 1)$.
- *p*-value:

• Critical values: z_{α} has right-tail probability α

$$P(z>z_{\alpha}\ |\ H_0)=\alpha \ \Leftrightarrow \ z_{\alpha}=\mathtt{qnorm}(1-\alpha,\,0,\,1).$$

• Rejection regions: let α be the significance.

Right-sided rejection region: $[z_{\alpha}, \infty)$

Left-sided rejection region: $(-\infty, z_{1-\alpha}]$

Two-sided rejection region: $(-\infty, z_{1-\alpha/2}] \cup [z_{\alpha/2}, \infty)$

Alternate test statistic

- Test statistic: \overline{x}
- Null distribution: $\phi(\overline{x} \mid H_0)$ is the pdf of $\overline{X} \sim N(\mu_0, \sigma^2/n)$.
- *p*-value:

Two-sided: $p = P(|\bar{X} - \mu_0| > |\bar{x} - \mu_0| | H_0) = 2*(1-\texttt{pnorm}(\texttt{abs}((\bar{x} - \mu_0), 0, \sigma/\sqrt{n})))$ one-sided-greater: $p = P(\bar{X} > \bar{x}) = 1 - \texttt{pnorm}(\bar{x}, \mu_0, \sigma/\sqrt{n})$ one-sided-less: $p = P(\bar{X} < \bar{x}) = \texttt{pnorm}(\bar{x}, \mu_0, \sigma/\sqrt{n})$

• Critical values: x_{α} has right-tail probability α

$$P(X>x_{\alpha}\ |\ H_0)=\alpha\ \Leftrightarrow\ x_{\alpha}=\mathtt{qnorm}(1-\alpha,\,\mu_0,\,\sigma/\sqrt{n}).$$

• Rejection regions: let α be the significance.

Right-sided rejection region: $[x_{\alpha}, \infty)$

Left-sided rejection region: $(-\infty, x_{1-\alpha}]$

Two-sided rejection region: $(-\infty, x_{1-\alpha/2}] \cup [x_{\alpha/2}, \infty)$

One-sample t-test of the mean

- Use: Compare the data mean to an hypothesized mean.
- Data: $x_1, x_2, ..., x_n$.
- Assumptions: The data are independent normal samples: $x_i \sim N(\mu, \sigma^2)$ where both μ and σ are unknown.
- H_0 : For a specified μ_0 , $\mu = \mu_0$
- *H_A*:

Two-sided: $\mu \neq \mu_0$ one-sided-greater: $\mu > \mu_0$ one-sided-less: $\mu < \mu_0$

• Test statistic: $t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$,

where s^2 is the sample variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$

- Null distribution: $\phi(t \mid H_0)$ is the pdf of $T \sim t(n-1)$. (Student t-distribution with n-1 degrees of freedom)
- *p*-value:

Two-sided: p = P(|T| > t) = 2*(1-pt(abs(t), n-1)) one-sided-greater: p = P(T > t) = 1 - pt(t, n-1) one-sided-less: p = P(T < t) = pt(t, n-1)

- Critical values: t_{α} has right -tail probability α

$$P(T>t_{\alpha}\ |\ H_0)=\alpha\ \Leftrightarrow\ t_{\alpha}=\operatorname{qt}(1-\alpha,\,n-1).$$

• Rejection regions: let α be the significance. Left-side

Right-sided rejection region: $[t_{\alpha}, \infty)$ Left-sided rejection region: $(-\infty, t_{1-\alpha}]$ Two-sided rejection region: $(-\infty, t_{1-\alpha/2}] \cup [t_{\alpha/2}, \infty)$

Two-sample t-test for comparing means (assuming equal variance)

- Use: Compare the means from two groups.
- Data: $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_m$.
- Assumptions: Both groups of data are independent normal samples:

$$\begin{aligned} x_i &\sim N(\mu_x, \sigma^2) \\ y_j &\sim N(\mu_y, \sigma^2) \end{aligned}$$

where both μ_x and μ_y are unknown and possibly different. The variance σ is unknown, but the same for both groups.

- H_0 : $\mu_x = \mu_y$
- *H*_A:

 $\begin{array}{ll} \text{Two-sided:} & \mu_x \neq \mu_y \\ \text{one-sided-greater:} & \mu_x > \mu_y \\ \text{one-sided-less:} & \mu_x < \mu_y \end{array}$

• Test statistic: $t = \frac{\overline{x} - \overline{y}}{s_P}$,

where s_x^2 and s_y^2 are the sample variances and s_P^2 is (sometimes called) the pooled sample variance:

$$s_p^2 = \frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2} \left(\frac{1}{n} + \frac{1}{m}\right)$$

- Null distribution: $\phi(t \mid H_0)$ is the pdf of $T \sim t(n+m-2)$. (Student t-distribution with n+m-2 degrees of freedom.)
- p-value:

 $\begin{array}{lll} \text{Two-sided:} & p = P(|T| > t) & = & 2*(1-\text{pt(abs(t), n+m-2)}) \\ \text{one-sided-greater:} & p = P(T > t) & = & 1 - \text{pt(t, n+m-2)} \\ \text{one-sided-less:} & p = P(T < t) & = & \text{pt(t, n+m-2)} \end{array}$

- Critical values: t_α has right-tail probability α

$$P(t>t_{\alpha}\mid H_{0})=\alpha \ \Leftrightarrow \ t_{\alpha}=\operatorname{qt}(1-\alpha,\,n+m-2).$$

• Rejection regions: let α be the significance.

Right-sided rejection region: $[t_{\alpha}, \infty)$ Left-sided rejection region: $(-\infty, t_{1-\alpha}]$ Two-sided rejection region: $(-\infty, t_{1-\alpha/2}] \cup [t_{\alpha/2}, \infty)$

- **Notes:** 1. **Unequal variances.** There is a form of the *t*-test for when the variances are not assumed equal. It is sometimes called Welch's *t*-test. In the R function t.test, there is an argument var.equal. Setting it to FALSE runs the unequal variances version of the t-test.
- 2. When the data naturally comes in pairs (x_i, y_i) , one uses the paired two-sample t-test. For example, in comparing two treatments, each patient receiving treatment 1 might be paired with a patient receiving treatment 2 who is similar in terms of stage of disease, age, sex, etc.

² test for variance

- Use: Compare the data variance to an hypothesized variance.
- Data: x_1, x_2, \dots, x_n .
- Assumptions: The data are independent normal samples: $x_i \sim N(\mu, \sigma^2)$ where both μ and σ are unknown.
- H_0 : For a specified $\sigma_0, \, \sigma = \sigma_0$
- *H*_A:

 $\begin{array}{ll} \text{Two-sided:} & \sigma \neq \sigma_0 \\ \text{one-sided-greater:} & \sigma > \sigma_0 \\ \text{one-sided-less:} & \sigma < \sigma_0 \end{array}$

• Test statistic: $X^2 = \frac{(n-1)s^2}{\sigma_0^2}$, where s^2 is the sample variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$

- Null distribution: $\phi(X^2 | H_0)$ is the pdf of $\chi^2 \sim \chi^2(n-1)$. (Chi-square distribution with n-1 degrees of freedom)
- *p*-value:

Because the χ^2 distribution is not symmetric around zero the two-sided test is a little awkward to write down. The idea is to look at the X^2 statistic and see if it's in the left or right tail of the distribution. The p-value is twice the probability in that tail.

An easy check for which tail it's in is: $s^2/\sigma_0^2 > 1$ (right tail) or $s^2/\sigma_0^2 < 1$ (left tail).

Two-sided:
$$p = \begin{cases} 2 * P(\chi^2 > X^2) & \text{if } X^2 \text{ is in the right tail} \\ 2 * P(\chi^2 < X^2) & \text{if } X^2 \text{ is in the left tail} \end{cases}$$
$$= 2*\min(\text{pchisq}(X^2, \text{n-1}), 1-\text{pchisq}(X^2, \text{n-1}))$$

one-sided-greater:
$$p=P(\chi^2>X^2)=$$
 1 - pchisq(X^2 , n-1)

one-sided-less:
$$p = P(\chi^2 < X^2) = \text{pchisq}(X^2, \text{ n-1})$$

- Critical values: x_α has right-tail probability α

$$P(\chi^2 > x_\alpha \ | \ H_0) = \alpha \ \Leftrightarrow \ x_\alpha = \mathtt{qchisq}(1-\alpha, \, n-1).$$

• Rejection regions: let α be the significance.

Right-sided rejection region: $[x_{\alpha}, \infty)$

Left-sided rejection region: $(-\infty, x_{1-\alpha}]$

Two-sided rejection region: $(-\infty, x_{1-\alpha/2}] \cup [x_{\alpha/2}, \infty)$

² test for goodness of fit for categorical data

- Use: Test whether discrete data fits a specific finite probability mass function.
- Data: An observed count O_i in cell i of a table.
- Assumptions: None
- H_0 : The data was drawn from a specific discrete distribution.
- H_A : The data was drawn from a different distribution
- Test statistic: The data consists of observed counts O_i for each cell. From the null hypothesis probability table we get a set of expected counts E_i . There are two statistics that we can use:

Likelihood ratio statistic
$$G=2*\sum O_i \ln\left(\frac{O_i}{E_i}\right)$$
 Pearson's chi-square statistic $X^2=\sum \frac{(O_i-E_i)^2}{E_i}.$

It is a theorem that under the null hypthesis $X^2 \approx G$ and both are approximately chi-square. Before computers, X^2 was used because it was easier to compute. Now, it is better to use G although you will still see X^2 used quite often.

- Degrees of freedom df: The number of cell counts that can be freely specified. In the case above, of the n cells n-1 can be freely specified and the last must be set to make the correct total. So we have df = n-1 degrees of freedom.
 - In other chi-square tests there can be more relations between the cell counts of df might be different from n-1.
- Rule of thumb: Combine cells until the expected count in each cell is at least 5.
- Null distribution: Assuming H_0 , both statistics (approximately) follow a chi-square distribution with df degrees of freedom. That is both $\phi(G \mid H_0)$ and $\phi(X^2 \mid H_0)$ have the approximately same pdf as $Y \sim \chi^2(df)$.
- *p*-value:

$$\begin{array}{lclcl} p & = & P(Y>G) & = & \mbox{1 - pchisq(G, df)} \\ p & = & P(Y>X^2) & = & \mbox{1 - pchisq}(X^2, df) \end{array}$$

• Critical values: c_{α} has right-tail probability α

$$P(Y>c_{\alpha}\mid H_{0})=\alpha \ \Leftrightarrow \ c_{\alpha}=\mathrm{qchisq}(1-\alpha,\,df).$$

• Rejection regions: let α be the significance. We expect X^2 to be small if the fit of the data to the hypothesized distribution is good. So we only use a right-sided rejection region: $[c_{\alpha}, \infty)$.

One-way ANOVA (F-test for equal means)

- Use: Compare the data means from n groups with m data points in each group.
- Data:

• Assumptions: Data for each group is an independent normal sample drawn from distributions with (possibly) different means but the same variance:

$$\begin{array}{ll} x_{1,j} & \sim N(\mu_1,\sigma^2) \\ x_{2,j} & \sim N(\mu_2,\sigma^2) \\ & \dots \\ x_{n,j} & \sim N(\mu_n,\sigma^2) \end{array}$$

The group means μ_i are unknown and possibly different. The variance σ is unknown, but the same for all groups.

- H_0 : All the means are identical $\mu_1 = \mu_2 = \dots = \mu_n$.
- H_A : Not all the means are the same.
- Test statistic: $f = \frac{MS_B}{MS_W}$, where

$$\begin{split} \bar{x}_i &= \text{mean of group } i \\ &= \frac{x_{i,1} + x_{i,2} + \ldots + x_{i,m}}{m}. \\ \overline{x} &= \text{grand mean of all the data.} \\ s_i^2 &= \text{sample variance of group } i \\ &= \frac{1}{m-1} \sum_{j=1}^m (x_{i,j} - \bar{x}_i)^2. \\ \text{MS}_B &= \text{between group variance} \\ &= m \times \text{sample variance of group means} \\ &= \frac{m}{n-1} \sum_{i=1}^n (\bar{x}_i - \overline{x})^2. \\ \text{MS}_W &= \text{average within group variance} \\ &= \text{sample mean of } s_1^2, \ldots, s_n^2 \\ &= \frac{s_1^2 + s_2^2 + \ldots + s_n^2}{n} \end{split}$$

- Idea: If the μ_i are all equal, this ratio should be near 1. If they are not equal then MS_B should be larger while MS_W should remain about the same, so f should be larger. We won't give a proof of this.
- Null distribution: $\phi(f \mid H_0)$ is the pdf of $F \sim F(n-1, n(m-1))$. This is the F-distribution with (n-1) and n(m-1) degrees of freedom. Several F-distributions are plotted below.
- p-value: p = P(F > f) = 1- pf(f, n-1, n*(m-1)))

Notes: 1. ANOVA tests whether all the means are the same. It does not test whether some subset of the means are the same.

- 2. There is a test where the variances are not assumed equal.
- 3. There is a test where the groups don't all have the same number of samples.

F-test for equal variances

- Use: Compare the valances from two groups.
- Data: $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_m$.
- Assumptions: Both groups of data are independent normal samples:

$$\begin{aligned} x_i &\sim N(\mu_x, \sigma_x^2) \\ y_j &\sim N(\mu_y, \sigma_y^2) \end{aligned}$$

where μ_x , μ_y , σ_x and σ_y are all unknown.

- H_0 : $\sigma_x = \sigma_y$
- *H*_A:

Two-sided: $\sigma_x \neq \sigma_y$ one-sided-greater: $\sigma_x > \sigma_y$ one-sided-less: $\sigma_x < \sigma_y$

• Test statistic: $f = \frac{s_x^2}{s_y^2}$,

where s_x^2 and s_y^2 are the sample variances of the data.

- Null distribution: $\phi(f \mid H_0)$ is the pdf of $F \sim F(n-1, m-1)$. (F-distribution with n-1 and m-1 degrees of freedom.)
- *p*-value:

Two-sided: $p=2*\min(pf(f,n-1,m-1), 1-pf(f, n-1,m-1))$ one-sided-greater: p=P(F>f)=1-pf(f, n-1, m-1) one-sided-less: p=P(F<f)=pf(f, n-1, m-1)

- Critical values: f_α has right-tail probability α

$$P(F > f_{\alpha} \mid H_0) = \alpha \quad \Leftrightarrow \quad f_{\alpha} = \operatorname{qf}(1 - \alpha, \, n - 1, \, m - 1).$$

MIT OpenCourseWare

https://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.