# Conditional Probability, Independence, Bayes' Theorem 18.05 Spring 2022



# Announcements/Agenda

#### Announcements

- Slides and problems are posted before class. Solutions right after class.
- Make use of office hours.
- Solution code is posted on MITx.

#### Agenda

- Studio 1 comments
- Conditional probability
- Multiplication rule; Law of total probability
- Bayes' Theorem
- Base rate fallacy

# Studio 1

- Really well done! About 1/2 the class did the optional problem.
- Take-away: Simulation is an (often) easy way to estimate probabilities.
- In 2(b), the exact probability for n = 23 is slightly more than 0.5. We accepted 23 or 24 as answers.
- Comment out extra print or cat statements.
- Print just what is asked for, plus comments to the grader.
- Instructions for finding your graded code is on MITx (right side of page, under Course Handouts)

## Sample Space Confusions

- 1. Sample space = set of all possible outcomes of an experiment.
- 2. The size of the set is **NOT** the sample space.
- 3. Outcomes can be sequences of numbers.

#### Examples.

1. Roll 5 dice:  $S = \text{set of all sequences of 5 numbers between 1 and 6, e.g. } (1,2,1,3,1,5) \in S.$ The size  $|S| = 6^5$  is not a set.

**2.** 
$$S = \text{set of all sequences of } 10 \text{ birthdays,}$$
  
e.g.  $(111, 231, 3, 44, 55, 129, 345, 14, 24, 14) \in S$ .  
 $|S| = 365^{10}$ 

**3.** n some number, S = set of all sequences of n birthdays.  $|S| = 365^n$ .

# Conditional Probability

'the probability of A given B'.

$$P(A|B) = \frac{P(A \ \cap \ B)}{P(B)}, \ \text{provided} \ P(B) \neq 0.$$





Conditional probability: Abstractly and for coin example

# Table/Concept Question

(Discuss with your table and then click in your answer.)

Toss a coin 4 times. Let A = 'at least three heads' and B = 'first toss is tails'. 1. What is P(A|B)? (a) 1/16 (b) 1/8 (c) 1/4 (d) 1/5 2. What is P(B|A)?

(a) 1/16 (b) 1/8 (c) 1/4 (d) 1/5

#### Multiplication Rule, Law of Total Probability

 $\label{eq:multiplication rule:} \mbox{ Multiplication rule: } P(A \, \cap \, B) = P(A|B) \cdot P(B).$ 

Law of total probability: If  $B_1$ ,  $B_2$ ,  $B_3$  partition S then

$$\begin{split} P(A) &= P(A \cap B_1) + P(A \cap B_2) + P(A \cap B_3) \\ &= P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3) \end{split}$$



#### Trees

- Organize computations
- Compute total probability
- Compute Bayes' formula

**Example.** Game: 5 orange and 2 blue balls in an urn. A random ball is selected and replaced by a ball of the other color; then a second ball is drawn.

1. What is the probability the second ball is orange?

2. What is the probability the first ball was orange given the second ball was orange?



# Concept (clicker) Question: Trees 1



1. The probability x represents

(a) 
$$P(A_1)$$
  
(b)  $P(A_1|B_2)$   
(c)  $P(B_2|A_1)$   
(d)  $P(C_1|B_2 \cap A_1)$ .

# Concept (clicker) Question: Trees 2



2. The probability y represents

(a) 
$$P(B_2)$$
  
(b)  $P(A_1|B_2)$   
(c)  $P(B_2|A_1)$   
(d)  $P(C_1|B_2 \cap A_1)$ .

#### Concept Question: Trees 3



3. The probability z represents

(a) 
$$P(C_1)$$
  
(b)  $P(B_2|C_1)$   
(c)  $P(C_1|B_2)$   
(d)  $P(C_1|B_2 \cap A_1)$ .

### Concept Question: Trees 4



4. The circled node represents the event

(a) 
$$C_1$$
  
(b)  $B_2 \cap C_1$   
(c)  $A_1 \cap B_2 \cap C_1$   
(d)  $C_1 | B_2 \cap A_1$ .

# Let's Make a Deal with Monty Hall

- One door hides a car, two hide goats.
- The contestant chooses any door.
- Monty always opens a different door with a goat. (He can do this because he knows where the car is.)
- The contestant is then allowed to switch doors if they want.

# What is the best strategy for winning a car?

(a) Switch (b) Don't switch (c) It doesn't matter



# Board question: Monty Hall



Organize the Monty Hall problem into a tree and compute the probability of winning if you always switch.

Hint first break the game into a sequence of actions.

#### Independence

Events A and B are independent if the probability that one occurred is not affected by knowledge that the other occurred.

(For any A and B)

$$\Leftrightarrow \ P(A \ \cap \ B) = P(A)P(B)$$

# Table Question: Independence

Roll two dice and consider the following events

- *A* = 'first die is 3'
- B = `sum is 6'
- C = 'sum is 7'

# $\boldsymbol{A}$ is independent of

- (a) B and C (b) B alone
- (c) C alone (d) Neither B or C.

Also called Bayes' Rule and Bayes' Formula.

Allows you to find P(A|B) from P(B|A), i.e. to 'invert' conditional probabilities.

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

Often compute the denominator  ${\cal P}({\cal B})$  using the law of total probability.

# Board Question: Evil Squirrels

Of the one million squirrels on MIT's campus most are good-natured. But one hundred of them are pure evil! An enterprising student in Course 6 develops an "Evil Squirrel Alarm" which they offer to sell to MIT for a passing grade. MIT decides to test the reliability of the alarm by conducting trials.



© <u>Bigmacthealmanac</u>. Some rights reserved. License: CC BY-SA. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

# Evil Squirrels Continued

1000000 squirrels, 100 are evil.

- When presented with an evil squirrel, the alarm goes off 99% of the time.
- When presented with a good-natured squirrel, the alarm goes off 1% of the time.

(a) If a squirrel sets off the alarm, what is the probability that it is evil?(b) Should MIT co-opt the patent rights and employ the system?

One solution (This is a base rate fallacy problem) We are given:

 $P(\mathsf{nice}) = 0.9999, \qquad P(\mathsf{evil}) = 0.0001 \, (\mathsf{base \ rate})$ 

 $P(\mathsf{alarm}\,|\,\mathsf{nice}) = 0.01, \ \ P(\mathsf{alarm}\,|\,\mathsf{evil}) = 0.99$ 

 $P(\mathsf{evil}\,|\,\mathsf{alarm}) = \frac{P(\mathsf{alarm}\,|\,\mathsf{evil})P(\mathsf{evil})}{P(\mathsf{alarm})}$ 

 $= \frac{P(\mathsf{alarm} \,|\, \mathsf{evil}) P(\mathsf{evil})}{P(\mathsf{alarm} \,|\, \mathsf{evil}) P(\mathsf{evil}) + P(\mathsf{alarm} \,|\, \mathsf{nice}) P(\mathsf{nice})}$ 

 $=\frac{(0.99)(0.0001)}{(0.99)(0.0001)+(0.01)(0.9999)}$ 

pprox 0.01

Squirrels continued

Summary:

Probability a random test is correct = 0.99

Probability a positive test is correct  $~\approx~~0.01$ 

### These probabilities are not the same!

### Alternative method of calculation:

|          | Evil | Nice   |         |
|----------|------|--------|---------|
| Alarm    | 99   | 9999   | 10098   |
| No alarm | 1    | 989901 | 989902  |
|          | 100  | 999900 | 1000000 |

## Board Question: Dice Game

- 1. The Randomizer holds the 6-sided die in one fist and the 8-sided die in the other.
- 2. The Roller selects one of the Randomizer's fists and covertly takes the die.
- 3. The Roller rolls the die in secret and reports the result to the table.

Given the reported number, what is the probability that the 6-sided die was chosen? (Find the probability for each possible reported number.) MIT OpenCourseWare <a href="https://ocw.mit.edu">https://ocw.mit.edu</a>

# 18.05 Introduction to Probability and Statistics Spring 2022

For information about citing these materials or our Terms of Use, visit: <a href="https://ocw.mit.edu/terms">https://ocw.mit.edu/terms</a>.