#### Variance; Continuous Random Variables 18.05 Spring 2022



# Announcements/Agenda

#### Announcements

None

#### Agenda

- Studio 2 comments
- Variance and standard deviation for discrete variables
- Calculus warmup
- Continuous random variables probability densities
- Exponential distribution

# Studio 2 comments

- Graded studio 2 code is posted in the usual place.
- Excellent job overall!
- Please suppress stray printouts. We will start penalizing these.
- If you used loops, please look at the solutions to see how R lets you do array operations without loops.
- Expected value of payoff IS NOT payoff of expected value. **Example.**  $X \sim \text{Bernoulli}(p)$  and  $Y = X^2 + X$ .

$$E[X] = p, \quad E[Y] = 2p, \quad E[X]^2 + E[X] = p^2 + p \neq E[Y].$$

# Variance and standard deviation

X a discrete random variable with mean  $E[X] = \mu$ .

- Meaning: spread of probability mass about the mean.
- Definition as expectation (weighted sum):

$$\mathsf{Var}(X) = E[(X-\mu)^2].$$

Computation as sum:

$$\mathsf{Var}(X) = \sum_{i=1}^n p(x_i)(x_i - \mu)^2.$$

Standard deviation σ = √Var(X).
 Units for standard deviation = units of X.

# 1. Concept question: Order the variance

The graphs below give the pmf for 3 random variables.



Order them by size of standard deviation from biggest to smallest. (Assume x has the same units in all three.)

1. ABC 2. ACB 3. BAC 4. BCA 5. CAB 6. CBA

2. Concept question: Zero variance

# Suppose X is a discrete random variable, True or False: If Var(X) = 0 then X is constant.

#### 1. True 2. False

# Computation from tables

**Example.** Compute the variance and standard deviation of X.

# Computation from tables

**Example.** Compute the variance and standard deviation of X.

values 
$$x$$
 1
 2
 3
 4
 5

 pmf  $p(x)$ 
 1/10
 2/10
 4/10
 2/10
 1/10

# A very useful formula

The following formula is often easier to use than the definition.

$${\rm Var}(X) \,=\, E[X^2] - E[X]^2 = \left(\sum_{i=1}^n p(x_i) x_i^2\right) - \mu^2.$$

Redo the above computation using this formula.

(Written solution with posted solutions )

# 3. Concept question: Standard deviation

Make an intuitive guess: Which pmf has the bigger standard deviation? (Assume w and y have the same units.)



1. Y 2. W

# 3. Concept question: Standard deviation

Make an intuitive guess: Which pmf has the bigger standard deviation? (Assume w and y have the same units.)



1. Y 2. W

**Table question:** make probability tables for Y and W and compute their standard deviations.

Algebraic properties of variance

If  $\boldsymbol{a}$  and  $\boldsymbol{b}$  are constants then

$$\mathsf{Var}(aX+b) = a^2 \, \mathsf{Var}(X), \qquad \sigma_{aX+b} = |a| \, \sigma_X.$$

If X and Y are **independent** random variables then

$$\mathsf{Var}(X+Y) = \mathsf{Var}(X) + \mathsf{Var}(Y).$$

#### Board questions

(a) Let  $X \sim \text{Bernoulli}(p)$ . Compute Var(X).

(b) Let  $Y \sim \operatorname{Bin}(n, p)$ . Show  $\operatorname{Var}(Y) = n p(1-p)$ .

(c) Suppose  $X_1, X_2, \ldots, X_n$  are independent and all have the same standard deviation  $\sigma = 2$ . Let  $\overline{X}$  be the average of  $X_1, \ldots, X_n$ .

What is the standard deviation of  $\overline{X}$ ?

# Continuous random variables

- Like discrete, except take a continuous range of values
- Replace probability mass function by probability density function
- Replace sums by integrals

# Calculus warmup for continuous random variables 1. $\int_{a}^{b} f(x) dx = \text{area under the curve } y = f(x).$ 2. $\int_{a}^{b} f(x) dx = \text{'sum of } f(x) dx'.$

Connection between the two views:



Area is approximately the sum of rectangles:

$$\int_a^b f(x)\,dx\approx f(x_1)\Delta x+f(x_2)\Delta x+\ldots+f(x_n)\Delta x=\sum_1^n f(x_i)\Delta x.$$

Continuous random variables: pdf and cdf

• Continuous range of values:

$$[0,1], [a,b], [0,\infty), (-\infty,\infty).$$

• Probability density function (pdf)

$$f(x)\geq 0; \quad P(c\leq X\leq d)=\int_c^d f(x)\,dx=\text{ `sum' of }f(x)dx.$$

Units for the pdf are  $\frac{\text{prob.}}{\text{unit of } x}$  (This explains the term density.)

• Cumulative distribution function (cdf)

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt.$$

## Visualization



#### Properties of the cdf

(Same as for discrete distributions)

• (Definition) 
$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) \, du.$$

• 
$$0 \le F(x) \le 1.$$

- non-decreasing.
- 0 to the left:  $\lim_{x \to -\infty} F(x) = 0.$
- 1 to the right:  $\lim_{x \to \infty} F(x) = 1.$

• 
$$P(c < X \le d) = F(d) - F(c).$$

• 
$$F'(x) = f(x)$$
.

# Board questions

- **1.** Suppose X has range [0,2] and pdf  $f(x) = c x^2$ .
- (a) What is the value of c?
- **(b)** Compute the cdf F(x).
- (c) Compute  $P(1 \le X \le 2)$ .
- (d) Plot the pdf and use it to illustrate part (c).
- **2.** Suppose Y has range [0, b] and cdf  $F(y) = y^2/9$ .
- (a) What is b?
- (b) Find the pdf of Y.

# 4. Discussion questions

Suppose X is a continuous random variable.

(a) If the pdf of X is f(x) can there be an x where f(x) = 10?

# 4. Discussion questions

Suppose X is a continuous random variable.

(a) If the pdf of X is f(x) can there be an x where f(x) = 10? (b) What is P(X = a)?

# 4. Discussion questions

Suppose X is a continuous random variable.

(a) If the pdf of X is f(x) can there be an x where f(x) = 10?
(b) What is P(X = a)?
(c) Does P(X = a) = 0 mean X never equals a?

#### Discussion questions

Which of the following are graphs of valid cumulative distribution functions?



# Exponential Random Variables



Continuous analogue of geometric distribution!

## Board question

I've noticed that taxis drive past 77 Mass. Ave. on the average of once every 10 minutes.

Suppose time spent waiting for a taxi is modeled by an exponential random variable

$$X \sim \text{Exponential}(1/10); \qquad f(x) = \frac{1}{10} e^{-x/10}$$

(a) Sketch the pdf of this distribution

(b) Shade the region which represents the probability of waiting between 3 and 7 minutes

(c) Compute the probability of waiting between between 3 and 7 minutes for a taxi

(d) Compute and sketch the cdf.

MIT OpenCourseWare https://ocw.mit.edu

# 18.05 Introduction to Probability and Statistics Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.