Bayesian Updating: Discrete Priors: 18.05 Spring 2022

STATISTICALLY SPEAKING, IF YOU PICK UPA SEASHELL AND DONT HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.
Image courtesy of xkcd. License: CC BY-NC.

Announcements/Agenda

Announcements

- Pset 6 is due tomorrow. Pset 7 will be due on Monday April 4.
- R Studio 4 is graded. Good job overall.
- A few people used the sample mean and variance to draw the normal curve - the instructions asked for the theoretical values.
- Coding hint: Don't keep retyping values like $18 / 38$ and $20 / 38$. Put them in a variable and use that.

Agenda

- Bayesian updating from prior to posterior probabilities.
- Organizing the computation in tables.
- Today: Known priors (base rates) -not like in real science.

Concept question: Learning from experience

(a) Which treatment would you choose?

1. Treatment 1: cured 100% of patients in a trial.
2. Treatment 2: cured 95% of patients in a trial.
3. Treatment 3: cured 90% of patients in a trial.

Concept question: Learning from experience

(a) Which treatment would you choose?

1. Treatment 1: cured 100% of patients in a trial.
2. Treatment 2: cured 95% of patients in a trial.
3. Treatment 3: cured 90% of patients in a trial.
(b) Which treatment would you choose?
4. Treatment 1: cured 3 out of 3 patients in a trial.
5. Treatment 2: cured 19 out of 20 patients treated in a trial.
6. Standard treatment: cured 90000 out of 100000 patients in clinical practice.

Which die is it?

- I have a bag containing dice of two types: 4-sided and 6-sided.
- Suppose I pick a die at random.
- What are the hypotheses for which die I chose?
- I'll roll the die.
- Based on what I rolled which type would you guess I picked?

Which die is it?

- I have a bag containing dice of two types: 4-sided and 6-sided.
- Suppose I pick a die at random.
- What are the hypotheses for which die I chose?
- I'll roll the die.
- Based on what I rolled which type would you guess I picked?
- Suppose you find out that the bag contained one 4-sided die and 999 6-sided dice. Does this change your guess?

Bayesian updating terminology, trees, tables

Example. Bag with one 4 -sided die and 9996 -sided dice. Pick one at random and roll it. Suppose I get a 3 .

For this example, all of the following are given in the posted solutions to today's problems.

Terminology: data, hypotheses, likelihoods, prior probabilities, posterior probabilities.

Updating using trees and tables.

Board Question: Updating from data

- A certain disease has a prevalence of 0.005 .
- A screening test has 2% false positives an 1% false negatives.

Suppose a random patient is screened and has a positive test.
(a) Represent this information with a tree and use Bayes' theorem to compute the probabilities the patient does and doesn't have the disease.
(b) Identify the data, hypotheses, likelihoods, prior probabilities and posterior probabilities.
(c) Make a full likelihood table containing all hypotheses and possible test data.
(d) Redo the computation using a Bayesian update table. Match the terms in your table to the terms in your previous calculation.

Board Question: Dice

Five dice: 4-sided, 6-sided, 8 -sided, 12 -sided, 20 -sided.
I pick one at random, roll it and report that the roll was a 13.
Goal: Find the probabilities the die is $4,6,8,12$ or 20 sided.
(a) Identify the hypotheses.
(b) Make a likelihood table with columns for the data 'rolled a 13', 'rolled a 5 ' and 'rolled a 9'.
(c) Make a Bayesian update table and compute the posterior probabilities that the chosen die is each of the five dice.
(d) Same question if I had reported a 5.
(e) Same question if I had reported a 9 .
(Keep the tables for 5 and 9 handy for the next problem!)

Tabular solution

```
D = 'rolled a 13'
```

hypothesis	prior	likelihood	Bayes numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H}) P(\mathcal{H})$	$P(\mathcal{H} \mid \mathcal{D})$
\mathcal{H}_{4}	$1 / 5$	0	0	0
\mathcal{H}_{6}	$1 / 5$	0	0	0
\mathcal{H}_{8}	$1 / 5$	0	0	0
\mathcal{H}_{12}	$1 / 5$	0	0	0
\mathcal{H}_{20}	$1 / 5$	$1 / 20$	$1 / 100$	1
total	1		$1 / 100$	1

Tabular solution

$\mathcal{D}=$ 'rolled a 5 '

hypothesis	prior	likelihood	Bayes numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H}) P(\mathcal{H})$	$P(\mathcal{H} \mid \mathcal{D})$
\mathcal{H}_{4}	$1 / 5$	0	0	0
\mathcal{H}_{6}	$1 / 5$	$1 / 6$	$1 / 30$	0.392
\mathcal{H}_{8}	$1 / 5$	$1 / 8$	$1 / 40$	0.294
\mathcal{H}_{12}	$1 / 5$	$1 / 12$	$1 / 60$	0.196
\mathcal{H}_{20}	$1 / 5$	$1 / 20$	$1 / 100$	0.118
total	1		0.085	1

Tabular solution

$\mathcal{D}=$ 'rolled a 9 '

hypothesis	prior	likelihood	Bayes numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H}) P(\mathcal{H})$	$P(\mathcal{H} \mid \mathcal{D})$
\mathcal{H}_{4}	$1 / 5$	0	0	0
\mathcal{H}_{6}	$1 / 5$	0	0	0
\mathcal{H}_{8}	$1 / 5$	0	0	0
\mathcal{H}_{12}	$1 / 5$	$1 / 12$	$1 / 60$	0.625
\mathcal{H}_{20}	$1 / 5$	$1 / 20$	$1 / 100$	0.375
total	1		0.0267	1

Iterated Updates

Suppose I rolled a 5 and then a 9 .

Update in two steps:
First for the 5
Then update the update for the 9 .

Tabular solution

$\mathcal{D}_{1}=$ 'rolled a 5^{\prime}
$\mathcal{D}_{2}=$ 'rolled a $9 '$
Bayes numerator ${ }_{1}=$ likelihood $_{1} \times$ prior.
Bayes numerator $_{2}=$ likelihood $_{2} \times$ Bayes numerator $_{1}$

hyp.	prior	Bayes			Bayes	
		likel. 1		likel. 2	num. 2	posterior
\mathcal{H}	$P(\mathcal{H})$	$P\left(\mathcal{D}_{1} \mid \mathcal{H}\right)$	***	$P\left(\mathcal{D}_{2} \mid \mathcal{H}\right)$	***	$P\left(\mathcal{H} \mid \mathcal{D}_{1}, \mathcal{D}_{2}\right)$
\mathcal{H}_{4}	1/5	0	0	0	0	0
\mathcal{H}_{6}	1/5	1/6	1/30	0	0	0
\mathcal{H}_{8}	1/5	1/8	1/40	0	0	0
\mathcal{H}_{12}	1/5	1/12	1/60	1/12	1/720	0.735
\mathcal{H}_{20}	1/5	1/20	1/100	1/20	1/2000	0.265
total	1				0.0019	1

Board Question: Iterated updates

Suppose I rolled a 9 and then a 5 .
(a) Do the Bayesian update in two steps: Step 1: First update for the 9. Step 2: Then update the update for the 5 .
(b) Do the Bayesian update in one step. That is, the data is $\mathcal{D}=$ ' 9 followed by 5 '

Tabular solution: two steps

$\mathcal{D}_{1}='$ rolled a $9 '$
$\mathcal{D}_{2}=$ 'rolled a 5 '
Bayes numerator ${ }_{1}=$ likelihood $_{1} \times$ prior.
Bayes numerator $_{2}=$ likelihood $_{2} \times$ Bayes numerator $_{1}$

hyp.	prior	Bayes			Bayes	
		likel. 1		likel. 2		posterior
\mathcal{H}	$P(\mathcal{H})$	$P\left(\mathcal{D}_{1} \mid \mathcal{H}\right)$	***	$P\left(\mathcal{D}_{2} \mid \mathcal{H}\right)$	***	$P\left(\mathcal{H} \mid \mathcal{D}_{1}, \mathcal{D}_{2}\right)$
\mathcal{H}_{4}	1/5	0	0	0	0	0
\mathcal{H}_{6}	1/5	0	0	1/6	0	0
\mathcal{H}_{8}	1/5	0	0	1/8	0	0
\mathcal{H}_{12}	1/5	1/12	1/60	1/12	1/720	0.735
\mathcal{H}_{20}	1/5	1/20	1/100	1/20	1/2000	0.265
total	1				0.0019	1

Tabular solution: one step

$\mathcal{D}=$ 'rolled a 9 then a 5 '

hypothesis	prior	likelihood	Bayes numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H}) P(\mathcal{H})$	$P(\mathcal{H} \mid \mathcal{D})$
\mathcal{H}_{4}	$1 / 5$	0	0	0
\mathcal{H}_{6}	$1 / 5$	0	0	0
\mathcal{H}_{8}	$1 / 5$	0	0	0
\mathcal{H}_{12}	$1 / 5$	$1 / 144$	$1 / 720$	0.735
\mathcal{H}_{20}	$1 / 5$	$1 / 400$	$1 / 2000$	0.265
total	1		0.0019	1

Board Question: probabilistic prediction

Along with finding posterior probabilities of hypotheses. We might want to make posterior predictions about the next roll.

With the same setup as before let:
$\mathcal{D}_{1}=$ result of first roll, $\quad \mathcal{D}_{2}=$ result of second roll
(a) Find $P\left(\mathcal{D}_{1}=5\right)$.
(b) Find $P\left(\mathcal{D}_{2}=4 \mid \mathcal{D}_{1}=5\right)$.

Solution

$\mathcal{D}_{1}=$ 'rolled a $5^{\prime}, \quad \mathcal{D}_{2}='$ rolled a $4 '$

Bayes						
hyp.	prior	likel. 1	num. 1	post. 1	likel. 2	post. $1 \times$ likel. 2
\mathcal{H}^{2}	$P(\mathcal{H})$	$P\left(\mathcal{D}_{1} \mid \mathcal{H}\right)$	$* * *$	$P\left(\mathcal{H} \mid \mathcal{D}_{1}\right)$	$P\left(\mathcal{D}_{2} \mid \mathcal{H}, \mathcal{D}_{1}\right)$	$P\left(\mathcal{D}_{2} \mid \mathcal{H}, \mathcal{D}_{1}\right) P\left(\mathcal{H} \mid \mathcal{D}_{1}\right)$
\mathcal{H}_{4}	$1 / 5$	0	0	0	$*$	0
\mathcal{H}_{6}	$1 / 5$	$1 / 6$	$1 / 30$	0.392	$1 / 6$	$0.392 \cdot 1 / 6$
\mathcal{H}_{8}	$1 / 5$	$1 / 8$	$1 / 40$	0.294	$1 / 8$	$0.294 \cdot 1 / 40$
\mathcal{H}_{12}	$1 / 5$	$1 / 12$	$1 / 60$	0.196	$1 / 12$	$0.196 \cdot 1 / 12$
\mathcal{H}_{20}	$1 / 5$	$1 / 20$	$1 / 100$	0.118	$1 / 20$	$0.118 \cdot 1 / 20$
total	1		0.085	1		0.124

The law of total probability tells us $P\left(\mathcal{D}_{1}\right)$ is the sum of the Bayes numerator 1 column in the table: $P\left(\mathcal{D}_{1}\right)=0.085$.

The law of total probability tells us $P\left(\mathcal{D}_{2} \mid \mathcal{D}_{1}\right)$ is the sum of the last column in the table: $P\left(\mathcal{D}_{2} \mid \mathcal{D}_{1}\right)=0.124$

MIT OpenCourseWare

https://ocw.mit.edu
18.05 Introduction to Probability and Statistics Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

