Bayesian Updating: Discrete Priors: 18.05 Spring 2022

Image courtesy of <u>xkcd</u>. License: CC BY-NC.

https://xkcd.com/1236/

Announcements/Agenda

Announcements

- Pset 6 is due tomorrow. Pset 7 will be due on Monday April 4.
- R Studio 4 is graded. Good job overall.
 - A few people used the sample mean and variance to draw the normal curve the instructions asked for the theoretical values.
 - Coding hint: Don't keep retyping values like 18/38 and 20/38. Put them in a variable and use that.

Agenda

- Bayesian updating from prior to posterior probabilities.
- Organizing the computation in tables.
- Today: Known priors (base rates) -not like in real science.

Concept question: Learning from experience

(a) Which treatment would you choose?

- 1. Treatment 1: cured 100% of patients in a trial.
- 2. Treatment 2: cured 95% of patients in a trial.
- 3. Treatment 3: cured 90% of patients in a trial.

Concept question: Learning from experience

(a) Which treatment would you choose?

- 1. Treatment 1: cured 100% of patients in a trial.
- 2. Treatment 2: cured 95% of patients in a trial.
- 3. Treatment 3: cured 90% of patients in a trial.

(b) Which treatment would you choose?

- 1. Treatment 1: cured 3 out of 3 patients in a trial.
- 2. Treatment 2: cured 19 out of 20 patients treated in a trial.

3. Standard treatment: cured 90000 out of 100000 patients in clinical practice.

Which die is it?

- I have a bag containing dice of two types: 4-sided and 6-sided.
- Suppose I pick a die at random.
- What are the hypotheses for which die I chose?
- I'll roll the die.
- Based on what I rolled which type would you guess I picked?

Which die is it?

- I have a bag containing dice of two types: 4-sided and 6-sided.
- Suppose I pick a die at random.
- What are the hypotheses for which die I chose?
- I'll roll the die.
- Based on what I rolled which type would you guess I picked?
- Suppose you find out that the bag contained one 4-sided die and 999 6-sided dice. Does this change your guess?

Bayesian updating terminology, trees, tables

Example. Bag with one 4-sided die and 999 6-sided dice. Pick one at random and roll it. Suppose I get a 3.

For this example, all of the following are given in the posted solutions to today's problems.

Terminology: data, hypotheses, likelihoods, prior probabilities, posterior probabilities.

$$\begin{array}{ccc} \mbox{Posterior} & \mbox{Likelihood} & \mbox{Prior} \\ \downarrow & \downarrow & \downarrow \\ P(\mathcal{H}_4 \,|\, R=3) \,=\, \frac{P(R=3 \,|\, \mathcal{H}_4) \cdot P(\mathcal{H}_4)}{P(R=3)} \\ \hline \\ \mbox{Total probability of the data} \end{array}$$

Updating using trees and tables.

Board Question: Updating from data

- A certain disease has a prevalence of 0.005.
- \bullet A screening test has 2% false positives an 1% false negatives.

Suppose a random patient is screened and has a positive test. (a) Represent this information with a tree and use Bayes' theorem to compute the probabilities the patient does and doesn't have the disease.

(b) Identify the data, hypotheses, likelihoods, prior probabilities and posterior probabilities.

(c) Make a full likelihood table containing all hypotheses and possible test data.

(d) Redo the computation using a Bayesian update table. Match the terms in your table to the terms in your previous calculation.

Board Question: Dice

Five dice: 4-sided, 6-sided, 8-sided, 12-sided, 20-sided.

I pick one at random, roll it and report that the roll was a 13.

Goal: Find the probabilities the die is 4, 6, 8, 12 or 20 sided.

(a) Identify the hypotheses.

(b) Make a likelihood table with columns for the data 'rolled a 13', 'rolled a 5' and 'rolled a 9'.

(c) Make a Bayesian update table and compute the posterior probabilities that the chosen die is each of the five dice.

- (d) Same question if I had reported a 5.
- (e) Same question if I had reported a 9.

(Keep the tables for 5 and 9 handy for the next problem!)

 $\mathcal{D}=\text{`rolled a 13'}$

		Bayes				
hypothesis	prior	likelihood	numerator	posterior		
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$		
\mathcal{H}_4	1/5	0	0	0		
\mathcal{H}_{6}	1/5	0	0	0		
\mathcal{H}_8	1/5	0	0	0		
\mathcal{H}_{12}	1/5	0	0	0		
\mathcal{H}_{20}	1/5	1/20	1/100	1		
total	1		1/100	1		

 $\mathcal{D}=\text{`rolled a 5'}$

		Bayes			
hypothesis	prior	likelihood	numerator	posterior	
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$	
\mathcal{H}_4	1/5	0	0	0	
\mathcal{H}_{6}	1/5	1/6	1/30	0.392	
\mathcal{H}_8	1/5	1/8	1/40	0.294	
\mathcal{H}_{12}	1/5	1/12	1/60	0.196	
\mathcal{H}_{20}	1/5	1/20	1/100	0.118	
total	1		0.085	1	

 $\mathcal{D}=\text{`rolled a 9'}$

		Bayes			
hypothesis	prior	likelihood	numerator	posterior	
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$	
\mathcal{H}_4	1/5	0	0	0	
\mathcal{H}_{6}	1/5	0	0	0	
\mathcal{H}_8	1/5	0	0	0	
\mathcal{H}_{12}	1/5	1/12	1/60	0.625	
\mathcal{H}_{20}	1/5	1/20	1/100	0.375	
total	1		0.0267	1	

Suppose I rolled a 5 and then a 9.

Update in two steps:

First for the 5

Then update the update for the 9.

 $\begin{array}{l} \mathcal{D}_1 = \text{`rolled a 5'} \\ \mathcal{D}_2 = \text{`rolled a 9'} \\ \text{Bayes numerator}_1 = \text{likelihood}_1 \times \text{ prior.} \\ \text{Bayes numerator}_2 = \text{likelihood}_2 \times \text{Bayes numerator}_1 \end{array}$

			Bayes		Bayes	
hyp.	prior	likel. 1	num. 1	likel. 2	num. 2	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D}_1 \mathcal{H})$	* * *	$P(\mathcal{D}_2 \mathcal{H})$	* * *	$P(\mathcal{H} \mathcal{D}_1,\mathcal{D}_2)$
\mathcal{H}_4	1/5	0	0	0	0	0
\mathcal{H}_{6}	1/5	1/6	1/30	0	0	0
\mathcal{H}_8	1/5	1/8	1/40	0	0	0
\mathcal{H}_{12}	1/5	1/12	1/60	1/12	1/720	0.735
\mathcal{H}_{20}	1/5	1/20	1/100	1/20	1/2000	0.265
total	1				0.0019	1

Board Question: Iterated updates

Suppose I rolled a 9 and then a 5.

(a) Do the Bayesian update in two steps:Step 1: First update for the 9.Step 2: Then update the update for the 5.

(b) Do the Bayesian update in one step. That is, the data is $\mathcal{D} =$ '9 followed by 5'

Tabular solution: two steps

 $\begin{array}{l} \mathcal{D}_1 = \text{`rolled a 9'} \\ \mathcal{D}_2 = \text{`rolled a 5'} \\ \text{Bayes numerator}_1 = \text{likelihood}_1 \times \text{ prior.} \\ \text{Bayes numerator}_2 = \text{likelihood}_2 \times \text{Bayes numerator}_1 \end{array}$

			Bayes		Bayes	
hyp.	prior	likel. 1	num. 1	likel. 2	num. 2	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D}_1 \mathcal{H})$	* * *	$P(\mathcal{D}_2 \mathcal{H})$	* * *	$P(\mathcal{H} \mathcal{D}_1,\mathcal{D}_2)$
\mathcal{H}_4	1/5	0	0	0	0	0
\mathcal{H}_{6}	1/5	0	0	1/6	0	0
\mathcal{H}_{8}	1/5	0	0	1/8	0	0
\mathcal{H}_{12}	1/5	1/12	1/60	1/12	1/720	0.735
\mathcal{H}_{20}	1/5	1/20	1/100	1/20	1/2000	0.265
total	1				0.0019	1

Tabular solution: one step

 $\mathcal{D}=$ 'rolled a 9 then a 5'

		Bayes			
hypothesis	prior	likelihood	numerator	posterior	
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$	
\mathcal{H}_4	1/5	0	0	0	
\mathcal{H}_{6}	1/5	0	0	0	
\mathcal{H}_8	1/5	0	0	0	
\mathcal{H}_{12}	1/5	1/144	1/720	0.735	
\mathcal{H}_{20}	1/5	1/400	1/2000	0.265	
total	1		0.0019	1	

Board Question: probabilistic prediction

Along with finding posterior probabilities of hypotheses. We might want to make posterior predictions about the next roll.

With the same setup as before let: $\mathcal{D}_1 = \text{result of first roll}, \quad \mathcal{D}_2 = \text{result of second roll}$

(a) Find
$$P(\mathcal{D}_1 = 5)$$
.

(b) Find $P(\mathcal{D}_2 = 4 | \mathcal{D}_1 = 5)$.

Solution

$$\mathcal{D}_1=\text{`rolled a 5',} \quad \mathcal{D}_2=\text{`rolled a 4'}$$

			Bayes			
hyp.	prior	likel. 1	num. 1	post. 1	likel. 2	post. 1 $ imes$ likel. 2
\mathcal{H}	$P(\mathcal{H})$	$\overline{P(\mathcal{D}_1 \mathcal{H})}$	* * *	$\overline{P(\mathcal{H} \mathcal{D}_1)}$	$\overline{P(\mathcal{D}_2 \mathcal{H},\mathcal{D}_1)}$	$P(\mathcal{D}_2 \mathcal{H},\mathcal{D}_1)P(\mathcal{H} \mathcal{D}_1)$
\mathcal{H}_4	1/5	0	0	0	*	0
\mathcal{H}_6	1/5	1/6	1/30	0.392	1/6	$0.392 \cdot 1/6$
\mathcal{H}_8	1/5	1/8	1/40	0.294	1/8	$0.294\cdot 1/40$
\mathcal{H}_{12}	1/5	1/12	1/60	0.196	1/12	$0.196 \cdot 1/12$
\mathcal{H}_{20}	1/5	1/20	1/100	0.118	1/20	$0.118 \cdot 1/20$
total	1		0.085	1		0.124

The law of total probability tells us $P(\mathcal{D}_1)$ is the sum of the Bayes numerator 1 column in the table: $P(\mathcal{D}_1) = 0.085$.

The law of total probability tells us $P(\mathcal{D}_2|\mathcal{D}_1)$ is the sum of the last column in the table: $\boxed{P(\mathcal{D}_2|\mathcal{D}_1)=0.124}$

MIT OpenCourseWare https://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.