# Conjugate Priors: Beta and Normal 18.05 Spring 2022



## Announcements/Agenda

#### Announcements

Studio comments

#### Agenda

- Lots of concept questions today: let's be efficient.
- Beta distribution
- Beta-binomial conjugate priors
- Normal-normal conjugate priors

## What is Bayesian updating good for

- Deep Bayesian Learning
- Speech recognition: training models
- Medical diagnosis, visualization
- Experimental design
- Lots more!

#### Beta distribution

 $\mathsf{Beta}(a,b)$  has density

$$f(\theta) = \frac{(a+b-1)!}{(a-1)!(b-1)!} \theta^{a-1} (1-\theta)^{b-1}$$

We will use a and b positive integers but real a, b > 0 are allowed.

- Beta(*a*, *b*) has nice computational properties.
- By choosing *a* and *b*, the Beta distribution allows us to choose a prior on the range [0,1] that has its mode at any value and has small or large variance around the mode.

https://mathlets.org/mathlets/beta-distribution/

#### Observation

The factorials out front give a normalizing factor. That is,

$$f(\theta) = \frac{(a+b-1)!}{(a-1)!(b-1)!} \theta^{a-1} (1-\theta)^{b-1} = c \theta^{a-1} (1-\theta)^{b-1}$$

Where there is no choice in the value of c, i.e., it must make

$$\int_0^1 f(\theta) \, d\theta = 1.$$

So if we have a pdf on [0,1] of the form  $f(\theta)=c\theta^{a-1}(1-\theta)^{b-1}$  , then

$$\theta \sim \mathsf{Beta}(a,b), \ \text{ and } \ c = \frac{(a+b-1)!}{(a-1)!(b-1)!}.$$

#### Aside on flat priors

If you don't have any prior information of a location parameter like  $\theta$ , you can use a flat prior also called an uninformative prior.

 $f(\theta) = 1$ 

**Note:** This is the pdf of a Beta(1,1) distribution.



#### Board question preamble: Beta priors

Suppose you are testing a new medical treatment with unknown probability of success  $\theta$ . You don't know  $\theta$ , but your prior belief is that it's probably not too far from 0.5. You capture this intuition with a Beta(5,5) prior on  $\theta$ .



To sharpen this distribution you take data and update the prior.

#### Question on next slide.

#### Board question: Beta priors

• 
$$\mathsf{Beta}(a,b) \colon f(\theta) = \frac{(a+b-1)!}{(a-1)!(b-1)!} \theta^{a-1} (1-\theta)^{b-1}$$

• Treatment has prior  $f(\theta) \sim \mathrm{Beta}(5,5)$ 

(a) Suppose you test it on 25 patients and have 20 successes.

- Find the posterior distribution on  $\theta$ .
- Identify the type of the posterior distribution.

(b) Suppose you recorded the order of the results and got

SSSSFSSSSFFFSSSFSFSSSSSSS

(20 S and 5 F). Find the posterior based on this data.

(c) Using your answer to (b) give an integral for the posterior predictive probability of success with the next patient.

#### Conjugate priors

We had

- Prior  $f(\theta) d\theta$  = Beta(5,5): Beta distribution
- Likelihood  $p(x|\theta)$ : binomial distribution x= 20 success, 5 failure
- Posterior  $f(\theta|x) d\theta = \text{Beta}(25,10)$ : Beta distribution

The Beta distribution is called a **conjugate prior** for the binomial likelihood.

That is, the Beta prior becomes a Beta posterior and repeated updating is easy! Only the parameters have been changed to reflect the data. Suppose your prior  $f(\theta)$  in the bent coin example is Beta(6,8). You flip the coin 7 times, getting 2 heads and 5 tails. What is the posterior pdf  $f(\theta|x)$ ?

- (a) Beta(2,5)
- (b) Beta(11,10)
- (c) Beta(6,8)
- (d) Beta(8,13)

#### Concept question: strong priors

Say we have a bent coin with unknown probability of heads  $\theta$ .

We are convinced that  $\theta \leq 0.7$ .

Our prior is uniform on  $\left[0,0.7\right]$  and 0 from 0.7 to 1.

We flip the coin 65 times and get 60 heads.

Which of the graphs below is the posterior pdf for  $\theta$ ?



Updating with normal prior and normal likelihood

A normal prior is conjugate to a normal likelihood with known  $\sigma$ .

- Data:  $x_1, x_2, \dots, x_n$
- Normal likelihood.  $x_1, x_2, \ldots, x_n \sim \mathsf{N}(\theta, \sigma^2)$

Assume  $\theta$  is our unknown parameter of interest,  $\sigma$  is known.

- Normal prior.  $\theta \sim {\rm N}(\mu_{\rm prior}, \sigma_{\rm prior}^2).$
- Normal Posterior.  $\theta \sim N(\mu_{\text{post}}, \sigma_{\text{post}}^2).$
- We have simple updating formulas that allow us to avoid complicated algebra or integrals (see next slide).

$$a = \frac{1}{\sigma_{\rm prior}^2}, \quad b = \frac{n}{\sigma^2}, \quad \mu_{\rm post} = \frac{a\mu_{\rm prior} + b\bar{x}}{a+b}, \quad \sigma_{\rm post}^2 = \frac{1}{a+b}.$$

## Updating with normal prior and normal likelihood

Formulas:

$$a = \frac{1}{\sigma_{\rm prior}^2}, \quad b = \frac{n}{\sigma^2}, \quad \mu_{\rm post} = \frac{a\mu_{\rm prior} + b\bar{x}}{a+b}, \quad \sigma_{\rm post}^2 = \frac{1}{a+b}.$$

Notes:

- Posterior mean  $\mu_{\rm post}$  is a weighted average of the data mean and the prior mean.
- Bigger n puts more weight on the data.
- Variance always decreases, i.e.  $\sigma_{\rm prior}^2 < \sigma_{\rm post}^2$ .

The update table with continuous data looks the same as always.

| hypoth. | prior                                                                                 | likelihood                                          | posterior                                                                                |
|---------|---------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------|
| θ       | $f(\theta) \sim N(\mu_{prior}, \sigma_{prior}^2)$                                     | $\phi(x \theta) \sim N(\theta,\sigma^2)$            | $f(\boldsymbol{\theta} \boldsymbol{x}) \sim N(\boldsymbol{\mu}_{post}, \sigma_{post}^2)$ |
|         | $= c_1 \exp\left( \tfrac{-(\theta-\mu_{\rm prior})^2}{2\sigma_{\rm prior}^2} \right)$ | $=c_2\exp\left(rac{-(x-	heta)^2}{2\sigma^2} ight)$ | $= c_3 \exp\left( \tfrac{-(\theta-\mu_{\rm post})^2}{2\sigma_{\rm post}^2} \right)$      |

#### Board question: Normal-normal updating formulas

For data 
$$x_1,\ldots,x_n$$
 with data mean  $ar{x}=rac{x_1+\ldots+x_n}{n}$ 

$$a = \frac{1}{\sigma_{\rm prior}^2}, \quad b = \frac{n}{\sigma^2}, \quad \mu_{\rm post} = \frac{a\mu_{\rm prior} + b\bar{x}}{a+b}, \quad \sigma_{\rm post}^2 = \frac{1}{a+b}.$$

Suppose we have one data point x = 2 drawn from N( $\theta$ ,  $3^2$ ) Suppose  $\theta$  is our parameter of interest with prior  $\theta = N(4, 2^2)$ 

Suppose  $\theta$  is our parameter of interest with prior  $\theta \sim \mathsf{N}(4,2^2).$ 

(a) Identify  $\mu_{\rm prior},~\sigma_{\rm prior},~\sigma,~n,~{\rm and}~\bar{x}.$ 

(b) Make a Bayesian update table, but leave the posterior as an unsimplified product.

(c) Use the updating formulas to find the posterior.

Concept question: (a) Normal priors, normal likelihood (a)



Blue graph = prior, Red lines = data in order: 3, 9, 12 Which plot is the posterior to just the first data value?

Concept question: (b) Normal priors, normal likelihood

(b)



Blue graph = prior, Red lines = data in order: 3, 9, 12 Which graph is posterior to all 3 data values?

#### Board question: normal/normal

For data  $x_1,\ldots,x_n$  with data mean  $\bar{x}=\frac{x_1+\ldots+x_n}{n}$ 

$$a = \frac{1}{\sigma_{\rm prior}^2}, \quad b = \frac{n}{\sigma^2}, \quad \mu_{\rm post} = \frac{a\mu_{\rm prior} + b\bar{x}}{a+b}, \quad \sigma_{\rm post}^2 = \frac{1}{a+b}.$$

**Question.** On a basketball team the average career free throw percentage over all players follows a N(75, 6<sup>2</sup>) distribution. In a given year individual players free throw percentage is N( $\theta$ , 4<sup>2</sup>) where  $\theta$  is their career average.

This season Sophie Lie made 85 percent of her free throws. What is the posterior expected value of her career percentage  $\theta$ ?

Suppose the prior has been set. Let  $x_1 \mbox{ and } x_2$  be two sets of data. Which of the following are true?

(a) If the likelihoods  $\phi(x_1|\theta)$  and  $\phi(x_2|\theta)$  are the same then they result in the same posterior.

(b) If the likelihoods  $\phi(x_1|\theta)$  and  $\phi(x_2|\theta)$  are proportional (as functions of  $\theta$ ) then they result in the same posterior.

(c) If two likelihood functions are proportional then they are equal.

## Conjugate priors

A prior is conjugate to a likelihood if the posterior is the same type of distribution as the prior.

Updating becomes algebra instead of calculus.

|                                    | hypothesis                  | data  | prior                                                                            | likelihood                                             | posterior                                                                     |
|------------------------------------|-----------------------------|-------|----------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|
| Bernoulli/Beta $\theta \in [0, 1]$ |                             | x     | beta(a, b)                                                                       | $\operatorname{Bernoulli}(\theta)$                     | $\operatorname{beta}(a+1,b) \text{ or } \operatorname{beta}(a,b+1)$           |
|                                    | θ                           | x = 1 | $c_1\theta^{a-1}(1-\theta)^{b-1}$                                                | θ                                                      | $c_3\theta^a(1-\theta)^{b-1}$                                                 |
|                                    | θ                           | x = 0 | $c_1\theta^{a-1}(1-\theta)^{b-1}$                                                | $1-\theta$                                             | $c_3\theta^{a-1}(1-\theta)^b$                                                 |
| Binomial/Beta                      | $\theta \in [0,1]$          | x     | $\mathrm{beta}(a,b)$                                                             | $\operatorname{binomial}(N,\theta)$                    | $\mathrm{beta}(a+x,b+N-x)$                                                    |
| (fixed $N$ )                       | θ                           | x     | $c_1\theta^{a-1}(1-\theta)^{b-1}$                                                | $c_2\theta^x(1-\theta)^{N-x}$                          | $c_3\theta^{a+x-1}(1-\theta)^{b+N-x-1}$                                       |
| Geometric/Beta                     | $\theta \in [0,1]$          | x     | $\mathrm{beta}(a,b)$                                                             | $\operatorname{geometric}(\theta)$                     | $\mathrm{beta}(a+x,b+1)$                                                      |
|                                    | θ                           | x     | $c_1\theta^{a-1}(1-\theta)^{b-1}$                                                | $\theta^x(1-\theta)$                                   | $c_3\theta^{a+x-1}(1-\theta)^b$                                               |
| Normal/Normal                      | $\theta\in(-\infty,\infty)$ | x     | $\mathrm{N}(\mu_{\mathrm{prior}},\sigma_{\mathrm{prior}}^2)$                     | $N(\theta,\sigma^2)$                                   | $\mathrm{N}(\mu_{\mathrm{post}},\sigma_{\mathrm{post}}^2)$                    |
| (fixed $\sigma^2$ )                | θ                           | x     | $c_1 \exp\left(\frac{-(\theta-\mu_{\rm prior})^2}{2\sigma_{\rm prior}^2}\right)$ | $c_2 \exp\left(\frac{-(x-\theta)^2}{2\sigma^2}\right)$ | $c_3 \exp\left(\frac{(\theta-\mu_{\rm post})^2}{2\sigma_{\rm post}^2}\right)$ |

There are many other likelihood/conjugate prior pairs.

#### Finger question: conjugate priors

#### Which of the following likelihood/prior pairs are conjugate?

|                        | hypothesis              | data | prior                                                                            | likelihood                          |
|------------------------|-------------------------|------|----------------------------------------------------------------------------------|-------------------------------------|
| (a) Exponential/Normal | $\theta \in [0,\infty)$ | x    | $\mathrm{N}(\mu_{\mathrm{prior}},\sigma_{\mathrm{prior}}^2)$                     | $\exp(\theta)$                      |
|                        | θ                       | x    | $c_1 \exp\left(-\frac{(\theta-\mu_{\rm prior})^2}{2\sigma_{\rm prior}^2}\right)$ | $\theta e^{-\theta x}$              |
| (b) Exponential/Gamma  | $\theta \in [0,\infty)$ | x    | $\operatorname{Gamma}(a,b)$                                                      | $\exp(\theta)$                      |
|                        | θ                       | x    | $c_1\theta^{a-1}\mathrm{e}^{-b\theta}$                                           | $\theta e^{-\theta x}$              |
| (c) Binomial/Normal    | $\theta \in [0,1]$      | x    | $\mathrm{N}(\mu_{\mathrm{prior}},\sigma_{\mathrm{prior}}^2)$                     | $\operatorname{binomial}(N,\theta)$ |
| (fixed $N$ )           | θ                       | x    | $c_1 \exp\left(-\frac{(\theta-\mu_{\rm prior})^2}{2\sigma_{\rm prior}^2}\right)$ | $c_2\theta^x(1-\theta)^{N-x}$       |

MIT OpenCourseWare https://ocw.mit.edu

## 18.05 Introduction to Probability and Statistics Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.