Frequentist Statistics and Hypothesis Testing 18.05 Spring 2022

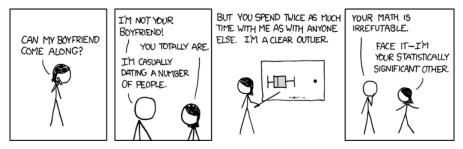


Image courtesy of <u>xkcd</u>. License: CC BY-NC.

https://xkcd.com/539/

Announcements/Agenda

Announcements

• None

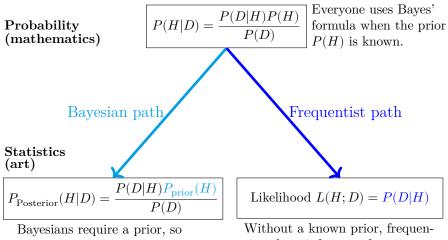
Agenda

- New topic: many terms, many concept questions.
- Pay attention to the pictures, both shading and labels.
- Introduction to the frequentist way of life.
- What is a statistic?
- NHST ingredients; rejection regions
- Simple and composite hypotheses
- *z*-tests, *p*-values

Frequentist school of statistics

- Dominant school of statistics in the $20^{\rm th}$ century.
- p-values, t-tests, χ^2 -tests, confidence intervals.
- Defines probability as long-term frequency in a repeatable random experiment.
 - Yes: probability a coin lands heads.
 - Yes: probability a given treatment cures a certain disease.
 - Yes: probability distribution for the error of a measurement.
- Rejects the use of probability to quantify incomplete knowledge, measure degree of belief in hypotheses.
 - No: prior probability for the probability an unknown coin lands heads.
 - No: prior probability on the efficac of a treatment for a disease.
 - No: prior probability distribution for the unknown mean of a normal distribution.

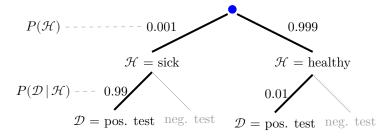
The fork in the road



they develop one from the best information they have. Without a known prior, frequentists draw inferences from just the likelihood function.

Disease screening redux: probability

The test is positive. Are you sick?

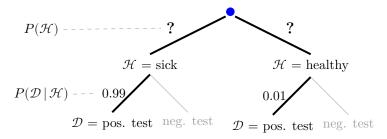


The prior is known so we can use Bayes' Theorem.

$$P({\rm sick}\,|\,{\rm pos.~test}) = \frac{0.001\cdot 0.99}{0.001\cdot 0.99 + 0.999\cdot 0.01} \approx 0.1$$

Disease screening redux: statistics

The test is positive. Are you sick?



The prior is not known.

Bayesian: use a subjective prior $P(\mathcal{H})$ and Bayes' Theorem.

Frequentist: the likelihood is all we can use: $P(\mathcal{D} \mid \mathcal{H})$

Concept question: What would a frequentist say?

Each day Jaam arrives X hours late to class, with $X \sim \text{uniform}(0,\theta)$, where θ is unknown. Jon models his initial belief about θ by a prior pdf $f(\theta)$. After Jaam arrives x hours late to the next class, Jon computes the likelihood function $\phi(x|\theta)$ and the posterior pdf $f(\theta|x)$.

Which of these probability computations would the frequentist consider valid?

1. none 5. prior and posterior

2. prior

3. likelihood

4. posterior

- 6. prior and likelihood
- 7. likelihood and posterior
- 8. prior, likelihood and posterior.

Statistics are computed from data

Working definition. A statistic is anything that can be computed from random data and known values.

A statistic cannot depend on the true value of an unknown parameter.

A statistic can depend on a hypothesized value of a parameter.

Examples of point statistics

- Data mean
- Data maximum (or minimum)
- Maximum likelihood estimate (MLE)

A statistic is random since it is computed from random data.

We can also get more complicated statistics like interval statistics.

Suppose x_1,\ldots,x_n is a sample from $\mathsf{N}(\mu,\sigma^2)\text{,}$ where μ and σ are unknown.

Is each of the following a statistic?

```
(a) The median of x_1, \ldots, x_n.
```

Suppose x_1,\ldots,x_n is a sample from $\mathsf{N}(\mu,\sigma^2)\text{, where }\mu$ and σ are unknown.

Is each of the following a statistic?

(a) The median of x_1, \ldots, x_n .

(b) The interval from the 0.25 quantile to the 0.75 quantile of N(μ,σ^2).

Suppose x_1,\ldots,x_n is a sample from $\mathsf{N}(\mu,\sigma^2)\text{, where }\mu$ and σ are unknown.

Is each of the following a statistic?

(a) The median of x_1, \ldots, x_n .

(b) The interval from the 0.25 quantile to the 0.75 quantile of N(μ,σ^2).

(c) The standardized mean

$$\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}.$$

Suppose x_1,\ldots,x_n is a sample from $\mathsf{N}(\mu,\sigma^2)\text{,}$ where μ and σ are unknown.

Is each of the following a statistic?

(a) The median of x_1, \ldots, x_n .

(b) The interval from the 0.25 quantile to the 0.75 quantile of N(μ, σ^2).

(c) The standardized mean $\frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$.

(d) The set of sample values less than 1 unit from \bar{x} .

Suppose x_1,\ldots,x_n is a sample from $\mathsf{N}(\mu,\sigma^2),$ where μ and σ are unknown.

Is each of the following a statistic?

(a) The median of x_1, \ldots, x_n .

(b) The interval from the 0.25 quantile to the 0.75 quantile of N(μ, σ^2).

(c) The standardized mean $\frac{\bar{x} - \mu}{\sigma/\sqrt{n}}$.

(d) The set of sample values less than 1 unit from \bar{x} .

(e) The $z=rac{\overline{x}-5}{3/\sqrt{n}}.$

Suppose x_1,\ldots,x_n is a sample from $\mathsf{N}(\mu,\sigma^2),$ where μ and σ are unknown.

Is each of the following a statistic?

(a) The median of x_1, \ldots, x_n .

(b) The interval from the 0.25 quantile to the 0.75 quantile of N(μ, σ^2).

(c) The standardized mean $\frac{x-\mu}{\sigma/\sqrt{n}}$.

(d) The set of sample values less than 1 unit from \bar{x} .

(e) The $z = \frac{\overline{x} - 5}{3/\sqrt{n}}$. (f) $z = \frac{\overline{x} - \mu_0}{\sigma_0/\sqrt{n}}$, where μ_0 and σ_0 are given values,

Cards and NHST

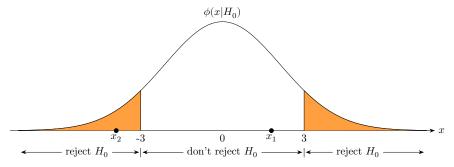
© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

NHST ingredients

Null hypothesis: H_0 , Alternative hypothesis: H_A

Test statistic: x (computed from the data)

Rejection region: reject H_0 in favor of H_A if x is in this region



 $p(x|H_0)$ or $\phi(x|H_0)$: null distribution

We define **significance** $\alpha = P(x \text{ is in the rejection region } | H_0).$

Choosing rejection regions

Coin with probability of heads θ .

Test statistic x = the number of heads in 10 tosses.

- $H_0\!\!:$ 'the coin is fair', i.e. $\theta=0.5$
- $H_A\!\!:$ 'the coin is biased, i.e. $\theta\neq 0.5$

Two strategies:

- 1. Choose rejection region then compute significance level.
- 2. Choose significance level then determine rejection region.

***** Everything is computed assuming H_0 *****

Table question: Testing coins

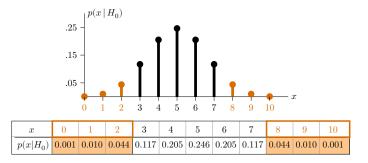
Suppose we have a coin with an unknown probability of heads θ .

Test statistic x = number of heads in 10 tosses.

Null hypothesis $H_0: \theta = 0.5$ (fair coin).

Alternative hypothesis H_A : $\theta \neq 0.5$ (unfair coin, two-sided).

(a) The rejection region is are the values of x shown in orange. What's the significance level?



(b) For significanc level $\alpha = 0.05$, fin a two-sided rejection region.

Solution

(a) $\alpha = 0.11$

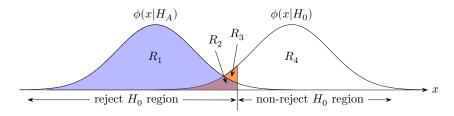
x	0	1	2	3	4	5	6	7	8	9	10
$p(x H_0)$	0.001	0.010	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.010	0.001

(b) $\alpha = 0.05$

x	0	1	2	3	4	5	6	7	8	9	10
$\boxed{p(x H_0)}$	0.001	0.010	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.010	0.001

Concept question: Picture the significance.

The null and alternate pdfs are shown on the following plot



The significance level of the test is given by the area of which region?

z-tests, p-values (two-sided)

Suppose we have independent **normal Data:** x_1, \ldots, x_n ; with unknown mean μ , known σ

Hypotheses:

z-value:

Test statistic: Null distribution: Significance:

Two-sided rejection region:

Two sided *p* value: Test: $\begin{array}{l} H_0: \ x_i \sim N(\mu_0, \sigma^2) \\ H_A: \ \text{Two-sided:} \ \mu \neq \mu_0. \\ \text{standardized } \overline{x}: \quad z = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \\ z \end{array}$

Assuming H_0 : $z \sim N(0, 1)$. Choose significance level α

(often $\alpha = 0.05$).

Left and right tails, with probability $\alpha/2$ each.

$$p = P(|Z| > |z| \,|\, H_0)$$

For $p \leq \alpha$ we reject H_0 in favor of H_A , i.e. if $p \leq \alpha$, then z is in the rejection region. z-tests, p-values (right-sided)

Independent normal Data: $x_1, ..., x_n$; with unknown mean μ , known σ Hypotheses: $H_0: x_i \sim N(\mu_0, \sigma^2)$

z-value:

Test statistic: Null distribution: Significance:

Right-sided rejection region: Right-sided p value: Test: H_A : Right-sided: $\mu > \mu_0$. standardized \overline{x} : $z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$ zAssuming H_0 : $z \sim N(0, 1)$. We set a significance level α (often $\alpha = 0.05$). Right tail, with probability α . $p = P(Z > z \mid H_0)$ For $p \leq \alpha$ we reject H_0 in favor of H_A ,

i.e. if $p \leq \alpha$, then z is in the rejection region.

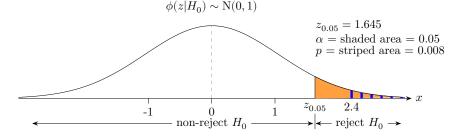
Visualization example

Suppose our data follows a normal distribution ${\rm N}(\mu,15^2)$, where μ is unknown.

Suppose our null and alternative hypotheses are

$$\begin{split} H_0:\; \mu = 100 \qquad H_A:\; \mu > 100 \; \text{(one-sided)} \\ \text{We collect 9 data points: } \bar{x} = 112. \; \text{So, } z = \frac{112-100}{15/3} = 2.4. \end{split}$$

Can we reject H_0 at significance level 0.05?



Board question: z statistic

Suppose we know the following about our null hypothesis significance test.

- H_0 : data follows a $N(5, 10^2)$
- $H_A:$ data follows a $N(\mu,10^2)$ where $\mu\neq 5.$
- Test statistic: z =standardized \overline{x} .
- Data: 64 data points with $\overline{x} = 6.25$.
- Significance level set to $\alpha = 0.05$.
- (a) Find the rejection region; draw a picture.
- (b) Find the z-value; add it to your picture.
- (c) Decide whether or not to reject H_0 in favor of H_A .
- (d) Find the *p*-value for this data; add to your picture.
- (e) What's the connection between the answers to (b), (c) and (d)?

Solution parts a-d

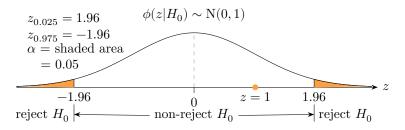
The null distribution $\phi(z\,|\,H_0) \sim N(0,1)$

(a) The rejection region is |z| > 1.96, i.e. 1.96 or more standard deviations from the mean.

(**b**) Standardizing
$$z = \frac{\overline{x} - 5}{5/4} = \frac{1.25}{1.25} = 1.$$

(c) Do not reject since z is not in the rejection region.

(d) Use a two-sided p-value p = P(|Z| > 1) = 0.32.



(e) The z-value not being in the rejection region tells us exactly the same thing as the p-value being greater than the significance, i.e. don't reject the null hypothesis H_0 .

Board question: More coins

Two coins: probability of heads is 0.5 for C_1 ; and 0.6 for C_2 .

We pick one at random, fli it 8 times and get 6 heads.

Here are the probability tables for the two coins

k	0	1	2	3	4	5	6	7	8
$p(k \theta = 0.5)$	0.004	0.031	0.109	0.219	0.273	0.219	0.109	0.031	0.004
$p(k \theta=0.6)$	0.001	0.008	0.041	0.124	0.232	0.279	0.209	0.090	0.017

(a) H_0 = 'The coin is C_1 ' H_A = 'The coin is C_2 '

Do you reject H_0 at the significance level $\alpha = 0.05$?

(Hint: First decide if this test is two-sided, left-sided or right-sided. Then determine the rejection region.)

(b) H_0 = 'The coin is C_2 ' H_A = 'The coin is C_1 ' Do you reject H_0 at the significance level $\alpha = 0.05$?

(c) Do your answers to (a) and (b) seem paradoxical

MIT OpenCourseWare https://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2022

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms_</u>.