Null Hypothesis Significance Testing p-values, significance level, power, t-tests 18.05 Spring 2022

Announcements/Agenda

Announcements

- Studio 6: In R studio 6: Most people hardwired the value of where to look for the secret path to be the value found from the test data. The grading data was different, so produced a different value.
- Next pset due on Tuesday, April 19

Agenda

- Simple and compund hypotheses
- p-values and extreme data
- Critical values
- Errors, significance, power
- t-tests

Understand this figure

- $x=$ test statistic
- $\phi\left(x \mid H_{0}\right)=$ pdf of null distribution $=$ blue curve
- Rejection region is a portion of the x-axis.
- Significance $=$ probability of rejection $=$ orange shaded area.

Simple and composite hypotheses

Simple hypothesis: the sampling distribution is fully specified. Usually the parameter of interest has a specific value.

Composite hypotheses: the sampling distribution is not fully specified. Usually the parameter of interest has a range of values.

Example. A coin has probability θ of heads. Toss it 30 times and let x be the number of heads.
(i) $H: \theta=0.4$ is simple. $x \sim \operatorname{binomial}(30,0.4)$.
(ii) $H: \theta>0.4$ is composite. $x \sim \operatorname{binomial}(30, \theta)$ depends on which value of θ is chosen.

Extreme data and p-values

Hypotheses: H_{0}, H_{A}.
Test statistic: value: x, computed from data, random.
Null distribution: $\phi\left(x \mid H_{0}\right)$ (assumes null hypothesis is true)
Sides: H_{A} determines if the rejection region is one or two-sided.
Rejection region/Significance: $P\left(x\right.$ in rejection region $\left.\mid H_{0}\right)=\alpha$.

The p-value is a computational tool to check if the test statistic is in the rejection region. It is also a measure of the evidence for rejecting H_{0}.
p-value: $P\left(\right.$ data at least as extreme as $\left.x \mid H_{0}\right)$
"Data at least as extreme": determined by the sidedness of the rejection region.

Extreme data and p-values

Example. Suppose we have the right-sided rejection region shown below. Also suppose we see data with test statistic $x=4.2$. Should we reject H_{0} ?

Extreme data and p-values

Example. Suppose we have the right-sided rejection region shown below. Also suppose we see data with test statistic $x=4.2$. Should we reject H_{0} ?

Solution: The test statistic is in the rejection region, so reject H_{0}.

Extreme data and p-values

Example. Suppose we have the right-sided rejection region shown below. Also suppose we see data with test statistic $x=4.2$. Should we reject H_{0} ?

Solution: The test statistic is in the rejection region, so reject H_{0}.
Alternatively: blue striped area < orange shaded area Significance: $\alpha=P\left(x\right.$ in rejection region $\left.\mid H_{0}\right)=$ orange shaded area.
p-value: $p=P$ (data at least as extreme as $\left.x \mid H_{0}\right)=$ blue striped area.
Since $p<\alpha$ we reject H_{0}.

Extreme data and p-values

Example. Now suppose $x=2.1$ as shown. Should we reject H_{0} ?

Extreme data and p-values

Example. Now suppose $x=2.1$ as shown. Should we reject H_{0} ?

Solution: Test statistic not in the rejection region: don't reject H_{0}.

Extreme data and p-values

Example. Now suppose $x=2.1$ as shown. Should we reject H_{0} ?

Solution: Test statistic not in the rejection region: don't reject H_{0}.
Alternatively: blue area $>$ orange shaded area
Significance: $\alpha=P\left(x\right.$ in rejection region $\left.\mid H_{0}\right)=$ orange shaded area.
p-value: $p=P\left(\right.$ data at least as extreme as $\left.x \mid H_{0}\right)=$ blue striped area.
Since $p>\alpha$ we don't reject H_{0}.

Critical values

- The boundaries of the rejection region are called critical values.
- Critical values are labeled by the probability to their right.
- They are complementary to quantiles: e.g., $c_{0.1}=q_{0.9}$
- Example: for a standard normal $c_{0.025}=1.96$ and $c_{0.975}=-1.96$.
For standard normal we will usually use $z_{0.025}$ instead of $c_{0.025}$.
- In R, for a standard normal $c_{0.025}=$ qnorm(0.975).

Two-sided p-values

These are trickier: what does 'at least as extreme' mean in this case?
Remember the p-value is a tool for deciding if the test statistic is in the region.
Best to look at each test individually. Here is a somewhat general rule: If the rejection region is equally split between left and right tails then

$$
p=2 \min (\text { left tail prob. of } x, \text { right tail prob. of } x)
$$

x is outside the rejection region, so $p>\alpha$: do not reject H_{0}

Concept question: NHST

You collect data from an experiment and do a left-sided z-test with significance 0.1 . You find the z-value is 1.8
(i) Which of the following computes the critical value for the rejection region?
(a) pnorm $(0.1,0,1)$
(c) $\operatorname{pnorm}(0.95,0,1)$
(e) $1-\operatorname{pnorm}(1.8,0,1)$
(b) pnorm $(0.9,0,1)$
(d) pnorm $(1.8,0,1)$
(f) qnorm ($0.05,0,1$)
(g) qnorm $(0.1,0,1)$
(i) qnorm $(0.95,0,1)$
(h) qnorm $(0.9,0,1)$

Concept question: NHST

You collect data from an experiment and do a left-sided z-test with significance 0.1 . You find the z-value is 1.8
(i) Which of the following computes the critical value for the rejection region?

```
(a) pnorm(0.1, 0, 1)
(c) pnorm(0.95, 0, 1)
(e) 1-pnorm(1.8, 0, 1)
(g) qnorm(0.1, 0, 1)
(i) qnorm(0.95, 0, 1)
```

(ii) Which of the above computes the p-value for this experiment?

Concept question: NHST

You collect data from an experiment and do a left-sided z-test with significance 0.1 . You find the z-value is 1.8
(i) Which of the following computes the critical value for the rejection region?

```
(a) pnorm(0.1, 0, 1)
(c) pnorm (0.95, 0, 1)
(e) 1-pnorm(1.8, 0, 1)
(g) qnorm(0.1, 0, 1)
(i) qnorm(0.95, 0, 1)
```

(ii) Which of the above computes the p-value for this experiment?
(iii) Should you reject the null hypothesis?
(a) Yes (b) No

Error, significance and power

		True state of nature	
Our	H_{0} is true	H_{A} is true	
	Reject H_{0}	Type I error	correct decision
	Don't reject H_{0}	correct decision	Type II error

Significance level $=P$ (type I error)
$=$ probability we incorrectly reject H_{0}
$=P\left(\right.$ test statistic in rejection region $\left.\mid H_{0}\right)$
$=P($ false positive $)$
Power $=$ probability we correctly reject H_{0}
$=P\left(\right.$ test statistic in rejection region $\left.\mid H_{A}\right)$
$=1-P($ type II error $)$
$=P($ true positive $)$

- H_{A} determines the power of the test.
- Significance and power are both probabilities of the rejection region.
- Want significance level near 0 and power near 1 .

Table question: significance level and power

Our data x follows a binomial $(\theta, 10)$ distribution with θ unknown.
The rejection region is boxed in orange. The corresponding probabilities for different hypotheses are shaded below it.

x	0	1	2	3	4	5	6	7	8	9	10
$H_{0}: p(x \mid \theta=0.5)$	0.001	0.010	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.010	.001
$H_{A}: p(x \mid \theta=0.6)$	0.000	0.002	0.011	0.042	0.111	0.201	0.251	0.215	0.121	0.040	0.006
$H_{A}: p(x \mid \theta=0.7)$	0.000	0.000	0.001	0.009	0.037	0.103	0.200	0.267	0.233	0.121	0.028

(a) Find the significance level of the test.
(b) Find the power of the test for each of the two alternative hypotheses.
(c) What is the probability of a type I error? type II?

Concept question: Power

The power of the test in the graph is given by the area of

(a) R_{1}
(b) R_{2}
(c) $R_{1}+R_{2}$
(d) $R_{1}+R_{2}+R_{3}$

Concept question: Higher power

Which of the tests below has higher power?

(1) Top graph
(2) Bottom graph

Discussion question: significance and power

The null distribution for test statistic x is $N\left(4,8^{2}\right)$. The rejection region is $\{x \geq 20\}$.

What is the significance level and power of this test?
(Full solution posted with solutions to today's problems.)

- Data: $x_{1}, x_{2}, \ldots, x_{n}$.
- Assume x_{i} are independently drawn from $N\left(\mu, \sigma^{2}\right)$.
- Called a sample.
- Null hypothesis: $\mu=\mu_{0}$ for some specific value μ_{0}.
- z-test: μ unknown, σ known.
- Test statistic (standardized mean): $z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}$
- Null distribution $z \sim N(0,1)$.

One-sample t-test

- Data: $x_{1}, x_{2}, \ldots, x_{n}$.
- Assume x_{i} are independently drawn from $N\left(\mu, \sigma^{2}\right)$.
- Null hypothesis: $\mu=\mu_{0}$ for some specific value μ_{0}.
- t-test: μ unknown, σ unknown.
- Test statistic (Studentized mean):

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}, \text { where } s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

s^{2} is the sample variance.

- Null distribution: $\phi\left(t \mid H_{0}\right)$ is the pdf of $T \sim t(n-1)$, the t distribution with $n-1$ degrees of freedom.

Board question: z and one-sample t-test

For both problems use significance level $\alpha=0.05$.
Assume the data $2,4,4,10$ are independently drawn from a $N\left(\mu, \sigma^{2}\right)$.

The hypotheses are: $H_{0}: \mu=0$ and $H_{A}: \mu \neq 0$.
(a) Is the test one or two-sided? If one-sided, which side?
(b) Assume $\sigma^{2}=16$ is known and test H_{0} against H_{A}.
(c) Now assume σ^{2} is unknown and test H_{0} against H_{A}.

Two-sample t-test: equal variances

- Data: $x_{1}, \ldots, x_{n} \quad y_{1}, \ldots, y_{m}$
- Assume x_{i} are independently drawn from $N\left(\mu_{x}, \sigma^{2}\right)$.
- Assume y_{j} are independently drawn from $N\left(\mu_{y}, \sigma^{2}\right)$. (Same σ)
- Assume x_{i} and y_{j} are independent.
- Null hypothesis H_{0} : $\mu_{x}=\mu_{y}$.
- t-test: μ_{x}, μ_{y}, σ all unknown.
- Pooled variance: $s_{p}^{2}=\frac{(n-1) s_{x}^{2}+(m-1) s_{y}^{2}}{n+m-2}\left(\frac{1}{n}+\frac{1}{m}\right)$.
- Test statistic: $t=\frac{\bar{x}-\bar{y}}{s_{p}}$
- Null distribution: $\quad \phi\left(t \mid H_{0}\right)$ is the pdf of $T \sim t(n+m-2)$
- In general (so we can compute power) we have

$$
\frac{(\bar{x}-\bar{y})-\left(\mu_{x}-\mu_{y}\right)}{s_{p}} \sim t(n+m-2)
$$

- Note: there are more general formulas for unequal variances.

Board question: two-sample t-test

Real data from 1408 women admitted to a maternity hospital for (i) medical reasons or through (ii) unbooked emergency admission. The duration of pregnancy is measured in complete weeks from the beginning of the last menstrual period.
Medical: 775 obs. with $\bar{x}=39.08$ and $s^{2}=7.77$.
Emergency: 633 obs. with $\bar{x}=39.60$ and $s^{2}=4.95$
(a) Set up and run a two-sample t-test to investigate whether the duration differs for the two groups.
(b) What assumptions did you make?

Class discussion: Type I errors Q1

Suppose a journal will only publish results that are statistically significant at the 0.05 level. What percentage of the papers it publishes contain type I errors?

Class discussion: Type I errors Q2

Jerry desperately wants to cure diseases but he is terrible at designing effective treatments. He is however a careful scientist and statistician, so he randomly divides his patients into control and treatment groups. The control group gets a placebo and the treatment group gets the experimental treatment. His null hypothesis H_{0} is that the treatment is no better than the placebo. He uses a significance level of $\alpha=0.05$. If his p-value is less than α he publishes a paper claiming the treatment is significantly better than a placebo.
(a) Since his treatments are never, in fact, effective what percentage of his experiments result in published papers?
(b) What percentage of his published papers contain type I errors, i.e. describe treatments that are no better than placebo?

Class discussion: Type I errors: Q3

Jen is a genius at designing treatments, so all of her proposed treatments are effective. She is also a careful scientist and statistician, so she too runs double-blind, placebo controlled, randomized studies. Her null hypothesis is always that the new treatment is no better than the placebo. She also uses a significance level of $\alpha=0.05$ and publishes a paper if $p<\alpha$.
(a) How could you determine what percentage of her experiments result in publications?
(b) What percentage of her published papers contain type I errors, i.e. describe treatments that are, in fact, no better than placebo?

MIT OpenCourseWare

https://ocw.mit.edu
18.05 Introduction to Probability and Statistics

Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

