Confidence Intervals for Normal Data 18.05 Spring 2022

Announcements/Agenda

Exam 2

- Next Thursday in class
- Covers classes 10-20
- You can use a cheat sheet -1 side of a 8×11 sheet
- We'll give you probability tables - these are in the review materials
- Class on Tuesday will be review
- Review materials are on MITx

Agenda

- Review of critical values and quantiles.
- Computing z, t, χ^{2} confidence intervals for normal data.
- Conceptual view of confidence intervals.
- Confidence intervals for polling (Bernoulli distributions).

Review of critical values and quantiles

- Quantile: left tail $P\left(X<q_{\alpha}\right)=\alpha$
- Critical value: right tail $P\left(X>c_{\alpha}\right)=\alpha$

Letters for critical values:

- z_{α} for $\mathrm{N}(0,1)$
- t_{α} for t distributions
- c_{α}, x_{α} all purpose

q_{α} and z_{α} for the standard normal distribution.

Concept question: critical values

1. $z_{0.025}=$
(a) -1.96
(b) -0.95
(c) 0.95
(d) 1.96
(e) 2.87

Concept question: critical values

1. $z_{0.025}=$
(a) -1.96
(b) -0.95
(c) 0.95
(d) 1.96
(e) 2.87
2. $-z_{0.16}=$
(a) -1.33
(b) -0.99
(c) 0.99
(d) 1.33
(e) 3.52

Computing confidence intervals from normal data

 Suppose the data x_{1}, \ldots, x_{n} is independently drawn from $\mathrm{N}\left(\mu, \sigma^{2}\right)$Confidence level $=1-\alpha$

- z confidence interval for the mean (σ known)

$$
\left[\bar{x}-\frac{z_{\alpha / 2} \cdot \sigma}{\sqrt{n}}, \quad \bar{x}+\frac{z_{\alpha / 2} \cdot \sigma}{\sqrt{n}}\right]
$$

- t confidence interval for the mean (σ unknown)

$$
\left[\bar{x}-\frac{t_{\alpha / 2} \cdot s}{\sqrt{n}}, \quad \bar{x}+\frac{t_{\alpha / 2} \cdot s}{\sqrt{n}}\right]
$$

- χ^{2} confidence interval for σ^{2}

$$
\left[\frac{n-1}{c_{\alpha / 2}} s^{2}, \quad \frac{n-1}{c_{1-\alpha / 2}} s^{2}\right]
$$

- t and χ^{2} have $n-1$ degrees of freedom.

z rule of thumb

Suppose $x_{1}, \ldots, x_{n} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ with σ known.
The rule-of-thumb 95% confidence interval for μ is:

$$
\left[\bar{x}-2 \frac{\sigma}{\sqrt{n}}, \quad \bar{x}+2 \frac{\sigma}{\sqrt{n}}\right]
$$

A more precise 95% confidence interval for μ is:

$$
\left[\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}, \quad \bar{x}+1.96 \frac{\sigma}{\sqrt{n}}\right]
$$

Board question: computing confidence intervals

The data 4, 1, 2, 3 is drawn from $\mathrm{N}\left(\mu, \sigma^{2}\right)$ with μ unknown.
(a) Find a $90 \% z$ confidence interval for μ, given that $\sigma=2$.

For the remaining parts, suppose σ is unknown.
(b) Find a $90 \% t$ confidence interval for μ.
(c) Find a $90 \% \chi^{2}$ confidence interval for σ^{2}.
(d) Find a $90 \% \chi^{2}$ confidence interval for σ.
(e) Given a normal sample with $n=100, \bar{x}=12$, and $s=5$, find the rule-of-thumb 95% confidence interval for μ.

Conceptual view of confidence intervals

- Computed from data \Rightarrow interval statistic
- 'Estimates' a parameter of interest \Rightarrow interval estimate
- Width = measure of precision
- Confidence level $=$ measure of performance
- Connected to NHST: Given a test statistic x, the confidence interval for $\theta=$ all values θ_{0} for which we wouldn't reject the null hypothesis $\theta=\theta_{0}$.
- Confidence intervals are a frequentist method.
- No need for a prior, only uses likelihood.
- Frequentists do not assign probabilities to hypothetical values of unknown parameters.
- A 95% confidence interval of $[1.1,3.3]$ for μ does not mean that $P(1.1 \leq \mu \leq 3.3)=0.95$.
- We will compare with Bayesian probability intervals later.

Applet:
https://mathlets.org/mathlets/confidence-intervals/

Discussion: Width of confidence intervals

The quantities $n, c=$ confidence, \bar{x}, σ all appear in the z confidence interval for the mean.

How does the width of a confidence interval for the mean change if:

1. We increase n and leave the others unchanged?
2. We increase c and leave the others unchanged?
3. We increase μ and leave the others unchanged?
4. We increase σ and leave the others unchanged?
(A) it gets wider $\quad(B)$ it gets narrower $\quad(C)$ it stays the same.

Intervals and pivoting

\bar{x} : sample mean (statistic)
μ_{0} : hypothesized mean (not known)

Algebra of pivoting:

$$
\begin{aligned}
& \mu_{0}-2.3 \leq \bar{x} \leq \mu_{0}+2.3 \\
\Leftrightarrow & \bar{x} \text { in non-rejection region } \\
\Leftrightarrow & \bar{x}+2.3 \geq \mu_{0} \geq \bar{x}-2.3 \\
& \mu_{0} \text { in confidence interval } \\
\Leftrightarrow & \left|\bar{x}-\mu_{0}\right| \leq 2.3
\end{aligned}
$$

(Can also do for non-symmetric intervals.)

Board question: confidence intervals and non-rejection regions

Suppose $x_{1}, \ldots, x_{n} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ with σ known.
Consider two intervals:

1. The z confidence interval around \bar{x} at confidence level $1-\alpha$.
2. The z non-rejection region for $H_{0}: \mu=\mu_{0}$ at significance level α.

Compute and sketch these intervals to show that:
μ_{0} is in the first interval $\Leftrightarrow \bar{x}$ is in the second interval.

Solution

Confidence interval: $\quad \bar{x} \pm z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}$
Non-rejection region: $\quad \mu_{0} \pm z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}$
Since the intervals are the same width they either both contain the other's center or neither one does.

Polling: a binomial proportion confidence interval

Data x_{1}, \ldots, x_{n} from a Bernoulli (θ) distribution with θ unknown.
A conservative normal ${ }^{\dagger} \quad(1-\alpha)$ confidence interval for θ is given by

$$
\left[\bar{x}-\frac{z_{\alpha / 2}}{2 \sqrt{n}}, \bar{x}+\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right] .
$$

Proof uses the CLT and the observation $\sigma=\sqrt{\theta(1-\theta)} \leq 1 / 2$.
Political polls often give a margin-of-error of $\pm 1 / \sqrt{n}$. This rule-of-thumb corresponds to a 95% confidence interval:

$$
\left[\bar{x}-\frac{1}{\sqrt{n}}, \bar{x}+\frac{1}{\sqrt{n}}\right] .
$$

(The proof is in the class 23 notes.)
Conversely, a margin of error of ± 0.05 means 400 people were polled.
${ }^{\dagger}$ There are many types of binomial proportion confidence intervals.
https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval

Board question: Polling

For a poll to find the proportion θ of people supporting X we know that a $(1-\alpha)$ confidence interval for θ is given by

$$
\left[\bar{x}-\frac{z_{\alpha / 2}}{2 \sqrt{n}}, \bar{x}+\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right] .
$$

(a) How many people would you have to poll to have a margin of error of 0.01 with 95% confidence? (You can do this in your head.)
(b) How many people would you have to poll to have a margin of error of 0.01 with 80% confidence. (You'll want R or other calculator here.)
(c) If $n=900$, compute the 95% and 80% confidence intervals for θ.

MIT OpenCourseWare

https://ocw.mit.edu
18.05 Introduction to Probability and Statistics

Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

