Confidence Intervals for Normal Data 18.05 Spring 2022

interval centered on μ_0 does not contain \overline{x} interval centered on \overline{x} does not contain μ_0 interval centered on μ_0 contains \overline{x} interval centered on \overline{x} contains μ_0

Announcements/Agenda

Exam 2

- Next Thursday in class
- Covers classes 10-20
- You can use a cheat sheet 1 side of a 8 imes 11 sheet
- We'll give you probability tables these are in the review materials
- Class on Tuesday will be review
- Review materials are on MITx

Agenda

- Review of critical values and quantiles.
- Computing z, t, χ^2 confidence intervals for normal data.
- Conceptual view of confidence intervals.
- Confidence intervals for polling (Bernoulli distributions).

Review of critical values and quantiles

• Quantile: left tail $P(X < q_{\alpha}) = \alpha$

- Critical value: right tail $P(X>c_{\alpha})=\alpha$

Letters for critical values:

- $\bullet \ z_\alpha \ {\rm for} \ {\rm N}(0,1)$
- t_{α} for t distributions
- c_{α}, x_{α} all purpose

 q_{α} and z_{α} for the standard normal distribution.

Concept question: critical values

1. $z_{0.025} =$ (a) -1.96 (b) -0.95 (c) 0.95 (d) 1.96 (e) 2.87

Concept question: critical values

1. $z_{0.025} =$ (a) -1.96 (b) -0.95 (c) 0.95 (d) 1.96 (e) 2.87 2. $-z_{0.16} =$ (a) -1.33 (b) -0.99 (c) 0.99 (d) 1.33 (e) 3.52 Computing confidence intervals from normal data Suppose the data x_1, \ldots, x_n is independently drawn from $N(\mu, \sigma^2)$ Confidence level = $1 - \alpha$

• z confidence interval for the mean (σ known)

$$\left[\overline{x} \ - \ \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}, \ \overline{x} \ + \ \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}\right]$$

• t confidence interval for the mean (σ unknown)

$$\left[\overline{x} - \frac{t_{\alpha/2} \cdot s}{\sqrt{n}}, \ \overline{x} + \frac{t_{\alpha/2} \cdot s}{\sqrt{n}}\right]$$

• χ^2 confidence interval for σ^2

$$\left[rac{n-1}{c_{lpha/2}} s^2, \ rac{n-1}{c_{1-lpha/2}} s^2
ight]$$

• t and χ^2 have n-1 degrees of freedom.

\boldsymbol{z} rule of thumb

Suppose $x_1,\ldots,x_n\sim \mathsf{N}(\mu,\sigma^2)$ with σ known.

The rule-of-thumb 95% confidence interval for μ is:

$$\left[\bar{x} - 2\frac{\sigma}{\sqrt{n}}, \ \bar{x} + 2\frac{\sigma}{\sqrt{n}}\right]$$

A more precise 95% confidence interval for μ is:

$$\left[\bar{x} - 1.96\frac{\sigma}{\sqrt{n}}, \ \bar{x} + 1.96\frac{\sigma}{\sqrt{n}}\right]$$

Board question: computing confidence intervals

The data 4, 1, 2, 3 is drawn from ${\sf N}(\mu,\sigma^2)$ with μ unknown.

(a) Find a 90% z confidence interval for μ , given that $\sigma = 2$.

For the remaining parts, suppose σ is unknown.

- (b) Find a 90% t confidence interval for μ .
- (c) Find a 90% χ^2 confidence interval for σ^2 .
- (d) Find a 90% χ^2 confidence interval for σ .
- (e) Given a normal sample with n = 100, $\overline{x} = 12$, and s = 5, find the rule-of-thumb 95% confidence interval for μ .

Conceptual view of confidence intervals

- Computed from data \Rightarrow interval statistic
- 'Estimates' a parameter of interest \Rightarrow interval estimate
- Width = measure of precision
- Confidence level = measure of performance
- Connected to NHST: Given a test statistic x, the confidence interval for $\theta =$ all values θ_0 for which we wouldn't reject the null hypothesis $\theta = \theta_0$.
- Confidence intervals are a frequentist method.
 - No need for a prior, only uses likelihood.
 - Frequentists do not assign probabilities to hypothetical values of unknown parameters.
 - A 95% confidence interval of $[1.1,\,3.3]$ for μ does not mean that $P(1.1 \le \mu \le 3.3) = 0.95.$
- We will compare with Bayesian probability intervals later.

Applet:

https://mathlets.org/mathlets/confidence-intervals/

Discussion: Width of confidence intervals

The quantities n, c = confidence, \overline{x} , σ all appear in the z confidence interval for the mean.

How does the width of a confidence interval for the mean change if:

- 1. We increase n and leave the others unchanged?
- 2. We increase c and leave the others unchanged?
- 3. We increase μ and leave the others unchanged?
- 4. We increase σ and leave the others unchanged?

(A) it gets wider (B) it gets narrower (C) it stays the same.

Intervals and pivoting

 \overline{x} : sample mean (statistic)

 μ_0 : hypothesized mean (not known)

interval centered on μ_0 does not contain \overline{x} interval centered on \overline{x} does not contain μ_0 interval centered on μ_0 contains \overline{x} interval centered on \overline{x} contains μ_0

Algebra of pivoting:

$$\begin{array}{l} \mu_0 - 2.3 \leq \overline{x} \leq \mu_0 + 2.3 \\ \Leftrightarrow \ \overline{x} + 2.3 \geq \mu_0 \geq \overline{x} - 2.3 \\ \Leftrightarrow \ |\overline{x} - \mu_0| \leq 2.3 \end{array}$$

 \overline{x} in non-rejection region μ_0 in confidence interval distance apart ≤ 2.3 .

(Can also do for non-symmetric intervals.)

Board question: confidence intervals and non-rejection regions

Suppose $x_1,\ldots,x_n\sim \mathsf{N}(\mu,\sigma^2)$ with σ known.

Consider two intervals:

- 1. The z confidence interval around \overline{x} at confidence level $1-\alpha.$
- 2. The z non-rejection region for $H_0: \mu = \mu_0$ at significance level α .

Compute and sketch these intervals to show that:

 μ_0 is in the first interval $\Leftrightarrow \overline{x}$ is in the second interval.

Solution

 $\begin{array}{ll} \text{Confidence interval:} & \overline{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \\ \text{Non-rejection region:} & \mu_0 \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \end{array}$

Since the intervals are the same width they either both contain the other's center or neither one does.

Polling: a binomial proportion confidence interval Data x_1, \ldots, x_n from a Bernoulli(θ) distribution with θ unknown. A conservative normal[†] $(1 - \alpha)$ confidence interval for θ is given by

$$\left[\bar{x} - \frac{z_{\alpha/2}}{2\sqrt{n}}, \ \bar{x} + \frac{z_{\alpha/2}}{2\sqrt{n}}\right].$$

Proof uses the CLT and the observation $\sigma = \sqrt{\theta(1-\theta)} \le 1/2$.

Political polls often give a margin-of-error of $\pm 1/\sqrt{n}$. This **rule-of-thumb** corresponds to a 95% confidence interval:

$$\left[\,\bar{x} - \frac{1}{\sqrt{n}}, \ \bar{x} + \frac{1}{\sqrt{n}}\,\right]$$

(The proof is in the class 23 notes.)

Conversely, a margin of error of ± 0.05 means 400 people were polled. [†]There are many types of binomial proportion confidence intervals. https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval

Board question: Polling

For a poll to find the proportion θ of people supporting X we know that a $(1-\alpha)$ confidence interval for θ is given by

$$\left[\bar{x} - \frac{z_{\alpha/2}}{2\sqrt{n}}, \ \bar{x} + \frac{z_{\alpha/2}}{2\sqrt{n}}\right]$$

(a) How many people would you have to poll to have a margin of error of 0.01 with 95% confidence? (You can do this in your head.)

(b) How many people would you have to poll to have a margin of error of 0.01 with 80% confidence. (You'll want R or other calculator here.)

(c) If n = 900, compute the 95% and 80% confidence intervals for θ .

MIT OpenCourseWare https://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.