Problem 1. (10 pts.) Continuous MLE

Suppose we have a distribution with the following pdf (called a gamma distribution)

\[f(x|a) = \frac{a^5}{4!} x^4 e^{-ax}. \]

Suppose we have independent data \(x_1, x_2, \ldots, x_m \) drawn from this distribution. Find the maximum likelihood estimate (MLE) for \(a \).

Suggestion: The likelihood can be compactly written in terms of the sum \(S \) and the product \(P \) of the data.

Solution: The likelihood for \(x_i \) is \(f(x_i|a) = \frac{a^5}{4!} x^4 e^{-ax} \). So, the likelihood of the data is

\[f(data|a) = \prod_{i=1}^{m} f(x_i|a) = \frac{a^{5m}}{(4!)^m} P^4 e^{-aS}, \]

where \(P = \prod x_i \) (product of data) and \(S = \sum x_i \) (sum of data).

So, the log likelihood is

\[l(a) = 5m \ln(a) + 4 \ln(P) - aS - m \ln(4!). \]

Taking the derivative and setting it to 0, we get

\[l'(a) = \frac{5m}{a} - S = 0 \Rightarrow \text{The MLE } \hat{a} = \frac{5m}{S}. \]

Note: It turns out, the distribution mean is \(5/a \) and \(\hat{a} = 5/(S/m) = 5/\bar{x} \), where \(\bar{x} \) is the data mean.

Problem 2. (25: 5,10,10 pts.) Least squares

In this problem we will use maximum likelihood estimates to develop Gauss’ method of least squares for fitting lines to data.

Bivariate data means data of the form \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \).

For bivariate data the simple linear regression model assumes that, for some values of the parameters \(a \) and \(b \), we have

\[y_i = ax_i + b + \text{ random measurement error}. \]

The model assumes the measurement errors are independent and identically distributed and follow a \(N(0, \sigma^2) \) distribution. (The values \(x_i \) may or may not be random.)

In general terms, we can say that the value of \(x \) ‘explains’ the value of \(y \) except for some random noise. Graphically, the model says to make a scatter plot and find the line that best fits the data. This is called a simple linear regression model.
It turns out that, under some assumptions about random variation of measurement error, one way to find a “best” line is by solving a maximum likelihood problem.

The goal is to find the values of the model parameters \(a\) and \(b\) that give the MLE for this model. To guide you, we note that the model says that

\[
y_i \sim N(ax_i + b, \sigma^2).
\]

Also remember that you know the density function for this distribution.

(a) For a general datum \((x_1, y_1)\) give the likelihood and log likelihood functions (these will be functions of \(y_i, x_1, a, b, \) and \(\sigma\).)

Solution: Since \(y_i \sim N(ax_i + b, \sigma^2)\) the likelihood with data \((x_1, y_1)\) is

\[
f(x_1, y_1 | a, b, \sigma) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{(y_1 - ax_1 - b)^2}{2\sigma^2}}.
\]

The log likelihood is

\[
\ln(f(x_1, y_1 | a, b, \sigma)) = -\ln(\sqrt{2\pi \sigma}) - \frac{(y_1 - ax_1 - b)^2}{2\sigma^2}.
\]

(b) Consider the data \((1,8), (3,2), (5,1)\). Assume that \(\sigma = 3\) is a known constant and find the maximum likelihood estimate for \(a\) and \(b\).

Note: since there are two variables \(a\) and \(b\), in order to find a critical point you will have to take partial derivatives and set them equal to 0. This part of the problem takes a fair amount of tedious algebra – sorry.

Note: We gave you a specific value of \(\sigma\), to avoid the distraction of one more symbol. If you look at your calculations, you should see that the value of \(\sigma\) plays no role in finding the MLE for \(a\) and \(b\). We get the same answer no matter what the value.

Solution: The likelihood for all the data is the product of the individual likelihoods. So,

\[
f((1,8), (3,2), (5,1) | a, b, \sigma) = \left(\frac{1}{\sqrt{2\pi \sigma}}\right)^3 e^{-\frac{(8-a-b)^2 + (2-3a-b)^2 + (1-5a-b)^2}{2\sigma^2}}
\]

Taking the natural log (and replacing the list of data by the word ‘data’) we get

\[
\ln(f(\text{data} | a, b, \sigma)) = -3\ln(\sqrt{2\pi \sigma}) - \frac{(8-a-b)^2 + (2-3a-b)^2 + (1-5a-b)^2}{2\sigma^2}
\]

Since we want to find \(a\) and \(b\) that maximize the likelihood we take the partial derivatives and set them to 0.

\[
\frac{\partial \ln(f(\text{data} | a, b, \sigma))}{\partial a} = \frac{2}{2\sigma^2}((8-a-b) + 3(2-3a-b) + 5(1-5a-b)) = 0
\]

\[
\frac{\partial \ln(f(\text{data} | a, b, \sigma))}{\partial b} = \frac{2}{2\sigma^2}((8-a-b) + (2-3a-b) + (1-5a-b)) = 0
\]

These are two equations in the unknowns \(a\) and \(b\). We simplify and solve:

\[
35a + 9b = 19
\]

\[
9a + 3b = 11
\]

which gives \(a = -7/4 = -1.75\); \(b = 107/12 \approx 8.917\).
The linear regression fit of a line to the data is \(y = ax + b = -7x/4 + 107/12 \).

(c) Use R to plot the data and the regression line you found in part (ii). The commands `plot(x, y, pch=19)` and `abline()` will come in handy. For `abline` be careful: the parameter \(a \) is the intercept and \(b \) is the slope – exactly the opposite of our usage. Print the plot and turn it in.

Solution: Here is the code for this plot:

```r
x = c(1,3,5)
y = c(8,2,1)
a = -7/4
b = 107/12
plot(x, y, pch=19, col='blue')  # Perversely, in abline a is the intercept and b is the slope.
abline(a=b, b=a, col='orange', lwd=2)
```

![Plot](image)

Problem 3. (15: 10,5 pts.) Estimating uniform parameters

(a) Suppose we have data 1.2, 2.1, 1.3, 10.5, 5 which we know is drawn independently from a uniform\((a, b)\) distribution. Give the maximum likelihood estimate for the parameters \(a \) and \(b \).

Hint: in this case you should not try to find the MLE by differentiating the likelihood function.

Solution: The pdf for uniform\((a, b)\) distribution takes two values

\[
f(x \mid a, b) = \begin{cases}
1/(b-a) & \text{if } x \text{ is in } [a, b] \\
0 & \text{otherwise}
\end{cases}
\]

Since the likelihood is the product of the likelihoods of each data point, the likelihood function is

\[
f(\text{data} \mid a, b) = \begin{cases}
1/(b-a)^5 & \text{if all data is in } [a, b] \\
0 & \text{if not}
\end{cases}
\]

This is maximized when \((b-a)\) is as small as possible. Since all the data has to be in the interval \([a, b]\) we minimize \((b-a)\) by taking \(a = \text{minimum of data}\) and \(b = \text{maximum of data}\).

Answer: \(a = 1.2, b = 10.5\).
(b) Suppose we have data $x_1, x_2, ..., x_n$ which we know is drawn independently from a uniform(a, b) distribution. Give the maximum likelihood estimate for the parameters a and b.

Solution: The same logic as in part (a) shows $a = \min(x_1, ..., x_n)$ and $b = \max(x_1, ..., x_n)$.