18.05 Problem Set 6, Spring 2022 Solutions

Problem 1. (10 pts.) Continuous MLE
Suppose we have a distribution with the following pdf (called a gamma distribution)

$$
f(x \mid a)=\frac{a^{5}}{(4)!} x^{4} \mathrm{e}^{-a x} .
$$

Suppose we have independent data $x_{1}, x_{2}, \ldots, x_{m}$ drawn from this distribution. Find the maximum likelihood estimate (MLE) for a.
Suggestion: The likelihood can be compactly written in terms of the sum S and the product P of the data.
Solution: The likelihood for x_{i} is $f\left(x_{i} \mid a\right)=\frac{a^{5}}{4!} x_{i}^{4} \mathrm{e}^{-a x_{i}}$. So, the likelihood of the data is

$$
f(\text { data } \mid a)=\prod_{i=1}^{m} f\left(x_{i} \mid a\right)=\frac{a^{5 m}}{(4!)^{m}} P^{4} \mathrm{e}^{-a S},
$$

where $P=\prod x_{i}$ (product of data) and $S=\sum x_{i}$ (sum of data).
So, the log likelihood is

$$
l(a)=5 m \ln (a)+4 \ln (P)-a S-m \ln (4!) .
$$

Taking the derivative and setting it to 0 , we get

$$
l^{\prime}(a)=\frac{5 m}{a}-S=0 \Rightarrow \text { The MLE } \hat{a}=\frac{5 m}{S}
$$

Note: It turns out, the distribution mean is $5 / a$ and $\hat{a}=5 /(S / m)=5 / \bar{x}$, where \bar{x} is the data mean.

Problem 2. (25: 5,10,10 pts.) Least squares
In this problem we will use maximum likelihood estimates to develop Gauss' method of least squares for fitting lines to data.
Bivariate data means data of the form

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right) .
$$

For bivariate data the simple linear regression model assumes that, for some values of the parameters a and b, we have

$$
y_{i}=a x_{i}+b+\text { random measurement error. }
$$

The model assumes the measurement errors are independent and identically distributed and follow a $N\left(0, \sigma^{2}\right)$ distribution. (The values x_{i} may or may not be random.)
In general terms, we can say that the value of x 'explains' the value of y except for some random noise. Graphically, the model says to make a scatter plot and find the line that best fits the data. This is called a simple linear regression model.

It turns out that, under some assumptions about random variation of measurement error, one way to find a "best" line is by solving a maximum likelihood problem.

The goal is to find the values of the model parameters a and b that give the MLE for this model. To guide you, we note that the model says that

$$
y_{i} \sim N\left(a x_{i}+b, \sigma^{2}\right) .
$$

Also remember that you know the density function for this distribution.
(a) For a general datum $\left(x_{1}, y_{1}\right)$ give the likelihood and log likelihood functions (these will be functions of y_{1}, x_{1}, a, b, and σ.)
Solution: Since $y_{i} \sim \mathrm{~N}\left(a x_{i}+b, \sigma^{2}\right)$ the likelihood with data $\left(x_{1}, y_{1}\right)$ is

$$
f\left(x_{1}, y_{1} \mid a, b, \sigma\right)=\frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{-\left(y_{1}-a x_{1}-b\right)^{2} /\left(2 \sigma^{2}\right)} .
$$

The log likelihood is

$$
\ln \left(f\left(x_{1}, y_{1} \mid a, b, \sigma\right)\right)=-\ln (\sqrt{2 \pi} \sigma)-\frac{\left(y_{1}-a x_{1}-b\right)^{2}}{2 \sigma^{2}}
$$

(b) Consider the data $(1,8),(3,2),(5,1)$. Assume that $\sigma=3$ is a known constant and find the maximum likelihood estimate for a and b.

Note: since there are two variables a and b, in order to find a critical point you will have to take partial derivatives and set them equal to 0 . This part of the problem takes a fair amount of tedius algebra -sorry.

Note: We gave you a specific value of σ, to avoid the distraction of one more symbol. If you look at your calculations, you should see that the value of σ plays no role in finding the MLE for a and b. We get the same answer no matter what the value.
Solution: The likelihood for all the data is the product of the individual likelihoods. So,

$$
f((1,8),(3,2),(5,1) \mid a, b, \sigma)=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{3} \mathrm{e}^{-\left((8-a-b)^{2}+(2-3 a-b)^{2}+(1-5 a-b)^{2}\right) /\left(2 \sigma^{2}\right)}
$$

Taking the natural \log (and replacing the list of data by the word 'data') we get

$$
\ln (f(\text { data } \mid a, b, \sigma))=-3 \ln (\sqrt{2 \pi} \sigma)-\frac{(8-a-b)^{2}+(2-3 a-b)^{2}+(1-5 a-b)^{2}}{2 \sigma^{2}}
$$

Since we want to find a and b that maximize the likelihood we take the partial derivatives and set them to 0 .

$$
\begin{aligned}
& \frac{\partial \ln (f(\text { data }) \mid a, b, \sigma)}{\partial a}=\frac{2}{2 \sigma^{2}}((8-a-b)+3(2-3 a-b)+5(1-5 a-b))=0 \\
& \frac{\partial \ln (f(\text { data }) \mid a, b, \sigma)}{\partial b}=\frac{2}{2 \sigma^{2}}((8-a-b)+(2-3 a-b)+(1-5 a-b))=0
\end{aligned}
$$

These are two equations in the unknowns a and b. We simplify and solve:

The linear regression fit of a line to the data is $y=a x+b=-7 x / 4+107 / 12$.
(c) Use R to plot the data and the regression line you found in part (ii) The commands plot($x, y, p c h=19$) and abline() will come in handy. For abline be careful: the parameter a is the intercept and b is the slope - exactly the opposite of our usage. Print the plot and turn it in.

Solution: Here is the code for this plot:
$\mathrm{x}=\mathrm{c}(1,3,5)$
$y=c(8,2,1)$
$\mathrm{a}=-7 / 4$
b $=107 / 12$
plot (x, y, pch=19, col='blue')
\#Perversely, in abline a is the intercept and b is the slope.
abline (a=b, b=a, col='orange', lwd=2)

Problem 3. (15: $10,5 \mathrm{pts}$.) Estimating uniform parameters
(a) Suppose we have data 1.2, 2.1, 1.3, 10.5, 5 which we know is drawn indepenedently from a uniform (a, b) distribution. Give the maximum likelihood estimate for the parameters a and b.

Hint: in this case you should not try to find the MLE by differentiating the likelihood function.

Solution: The pdf for uniform (a, b) distribution takes two values

$$
f(x \mid a, b)= \begin{cases}1 /(b-a) & \text { if } x \text { is in }[a, b] \\ 0 & \text { otherwise }\end{cases}
$$

Since the likelihood is the product of the likelihoods of each data point, the likelihood function is

$$
f(\text { data } \mid a, b)= \begin{cases}1 /(b-a)^{5} & \text { if all data is in }[a, b] \\ 0 & \text { if not }\end{cases}
$$

This is maximized when $(b-a)$ is as small as possible. Since all the data has to be in the interval $[a, b]$ we minimize $(b-a)$ by taking $a=$ minimum of data and $b=$ maximum of data.
Answer: $a=1.2, b=10.5$.
(b) Suppose we have data $x_{1}, x_{2}, \ldots, x_{n}$ which we know is drawn indepenedently from a uniform (a, b) distribution. Give the maximum likelihood estimate for the parameters a and b.

Solution: The same logic as in part (a) shows $a=\min \left(x_{1}, \ldots, x_{n}\right)$ and $b=\max \left(x_{1}, \ldots, x_{n}\right)$.

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

