18.05 Problem Set 11, Spring 2022

Problem 1. (20: 10,5,5 pts.) (Height)

Suppose μ is the average height of a college male. You measure the heights (in inches) of twenty college men, getting data x_1, \ldots, x_{20} , with sample mean $\overline{x} = 69.55$ in. and sample variance $s^2 = 14.26$ in². Suppose that the x_i are drawn from a normal distribution with unknown mean μ and unknown variance σ^2 .

(a) Using \overline{x} and s^2 , construct a 90% *t*-confidence interval for μ .

(b) Now suppose you are told that the height of a college male is normally distributed with standard deviation 3.77 in. Using the same data as in part (a), construct a 90% z-confidence interval for μ .

(c) In (b), how many people in total would you need to measure to bring the width of the 90% z-confidence interval down to 1 inch?

Problem 2. (10 pts.) Confidence intervals from standardized statistics

The Beta distribution arises in a surprising way: draw a sample of size n from a uniform(0,1) distribution and let w_2 be the second smallest value. Then it turns out that

$$w_2 \sim \text{Beta}(2, n-1)$$

Now suppose you draw a sample of size n from a uniform(0, a) distribution, where a is unknown. If we let y_2 be the second smallest data value then the standardized order statistic

$$y_2/a \sim \text{Beta}(2, n-1).$$

Use y_2 and **qbeta** in R, to define a 95% confidence interval for *a*. (Because *n* and y_2 are not given this will be a general formula not numbers.)

Finally, supposing n = 9 and $y_2 = 1.5$, give the 95% confidence interval for a.

Problem 3. (35: 15,10,10 pts.) Various variances

Consider a sample of size n drawn from a Bernoulli(θ) distribution. (That is, a draw from a binomial(n, θ) distribution.) In constructing a confidence interval the conservative estimate is that the variance of the underlying Bernoulli distribution is $\sigma^2 = 1/4$ –this is conservative because for any θ we know that $\sigma^2 \leq 1/4$.

(a) In this problem we want to compare how well normal distribution using the conservative estimate matches the one using the true variance

(i) Let $\theta = 0.5$ and n = 250. Make a plot that includes

• the pmf $p(x|\theta)$ of the binomial (n, θ) distribution.

• the pdf of the normal distribution with the same mean and variance as the binomial $((n, \theta))$ distribution

• the normal distribution with the same mean (as the binomial distribution) and conservative variance to your plot.

Note: The conservative variance for a Bernoulli(θ) distribution is 1/4. So the conservative variance for a binomial (n, θ) is n/4.

Note. It is not reasonable to compare the probabilities in a pmf to the densities in a pdf. In order to make them comparable, but also to make the graphs readable, you should plot the pmf as points, but think of them as the top of a density histogram with bin width 1 and breaks on the half integers.

(ii) Make a similar plot for $\theta = 0.3$ and n = 250.

(iii) Make a similar plot for $\theta = 0.1$ and n = 250.

In each case, how close are each of the normal distributions to the binomial distribution? How do the two normal distributions differ? Based on your plots, for what range of θ do you think the conservative normal distribution is a reasonable approximation for $binomial(n, \theta)$ with large n?

(b) Suppose θ is the probability of success, and that the result of an experiment was 140 successes out of 250 trials. Find 80% and 95% confidence intervals for θ using the conservative variance. (For the 95% interval use the rule-of-thumb that $z_{0.025} = 2$.)

(c) Using the same data as in part (b), find an 80% **posterior** probability interval for θ using a flat prior, i.e. Beta(1, 1). Center your interval between the 0.1 and 0.9 quantiles. Compare this with the 80% confidence interval in part (b).

Hint: Use qbeta(p, a, b) to do the computation.

MIT OpenCourseWare https://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.