18.05 Problem Set 11, Spring 2022

Problem 1. (20: $10,5,5$ pts.) (Height)
Suppose μ is the average height of a college male. You measure the heights (in inches) of twenty college men, getting data x_{1}, \ldots, x_{20}, with sample mean $\bar{x}=69.55 \mathrm{in}$. and sample variance $s^{2}=14.26 \mathrm{in}^{2}$. Suppose that the x_{i} are drawn from a normal distribution with unknown mean μ and unknown variance σ^{2}.
(a) Using \bar{x} and s^{2}, construct a $90 \% t$-confidence interval for μ.
(b) Now suppose you are told that the height of a college male is normally distributed with standard deviation 3.77 in. Using the same data as in part (a), construct a $90 \% z$-confidence interval for μ.
(c) In (b), how many people in total would you need to measure to bring the width of the $90 \% \mathrm{z}$-confidence interval down to 1 inch?

Problem 2. (10 pts .) Confidence intervals from standardized statistics
The Beta distribution arises in a surprising way: draw a sample of size n from a uniform $(0,1)$ distribution and let w_{2} be the second smallest value. Then it turns out that

$$
w_{2} \sim \operatorname{Beta}(2, n-1) .
$$

Now suppose you draw a sample of size n from a uniform $(0, a)$ distribution, where a is unknown. If we let y_{2} be the second smallest data value then the standardized order statistic

$$
y_{2} / a \sim \operatorname{Beta}(2, n-1) .
$$

Use y_{2} and qbeta in R , to define a 95% confidence interval for a. (Because n and y_{2} are not given this will be a general formula not numbers.)
Finally, supposing $n=9$ and $y_{2}=1.5$, give the 95% confidence interval for a.
Problem 3. (35: $15,10,10$ pts.) Various variances
Consider a sample of size n drawn from a $\operatorname{Bernoulli}(\theta)$ distribution. (That is, a draw from a binomial (n, θ) distribution.) In constructing a confidence interval the conservative estimate is that the variance of the underlying Bernoulli distribution is $\sigma^{2}=1 / 4$-this is conservative because for any θ we know that $\sigma^{2} \leq 1 / 4$.
(a) In this problem we want to compare how well normal distribution using the conservative estimate matches the one using the true variance
(i) Let $\theta=0.5$ and $n=250$. Make a plot that includes

- the $\operatorname{pmf} p(x \mid \theta)$ of the $\operatorname{binomial}(n, \theta)$ distribution.
- the pdf of the normal distribution with the same mean and variance as the binomial $((n, \theta))$ distribution
- the normal distribution with the same mean (as the binomial distribution) and conservative variance to your plot.
Note: The conservative variance for a $\operatorname{Bernoulli}(\theta)$ distribution is $1 / 4$. So the conservative variance for a $\operatorname{binomial}(n, \theta)$ is $n / 4$.

Note. It is not reasonable to compare the probabilities in a pmf to the densities in a pdf. In order to make them comparable, but also to make the graphs readable, you should plot the pmf as points, but think of them as the top of a density histogram with bin width 1 and breaks on the half integers.
(ii) Make a similar plot for $\theta=0.3$ and $n=250$.
(iii) Make a similar plot for $\theta=0.1$ and $n=250$.

In each case, how close are each of the normal distributions to the binomial distribution? How do the two normal distributions differ? Based on your plots, for what range of θ do you think the conservative normal distribution is a reasonable approximation for $\operatorname{binomial}(n, \theta)$ with large n ?
(b) Suppose θ is the probability of success, and that the result of an experiment was 140 successes out of 250 trials. Find 80% and 95% confidence intervals for θ using the conservative variance. (For the 95% interval use the rule-of-thumb that $z_{0.025}=2$.)
(c) Using the same data as in part (b), find an 80% posterior probability interval for θ using a flat prior, i.e. $\operatorname{Beta}(1,1)$. Center your interval between the 0.1 and 0.9 quantiles. Compare this with the 80% confidence interval in part (b).
Hint: Use qbeta ($\mathrm{p}, \mathrm{a}, \mathrm{b}$) to do the computation.

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

