18.05 Problem Set 11, Spring 2022 Solutions

Problem 1. (20: $10,5,5$ pts.) (Height)
Suppose μ is the average height of a college male. You measure the heights (in inches) of twenty college men, getting data x_{1}, \ldots, x_{20}, with sample mean $\bar{x}=69.55 \mathrm{in}$. and sample variance $s^{2}=14.26 \mathrm{in}^{2}$. Suppose that the x_{i} are drawn from a normal distribution with unknown mean μ and unknown variance σ^{2}.
(a) Using \bar{x} and s^{2}, construct a 90% t-confidence interval for μ.

Solution: We have $n=20$ and $\alpha=0.1$ so

$$
t_{\alpha / 2}=\mathrm{qt}(0.05,19)=1.7291
$$

Thus the $90 \% t$-confidence interval is given by

$$
\left[\bar{x}-t_{\alpha / 2} \cdot \frac{s}{\sqrt{n}}, \bar{x}+t_{\alpha / 2} \cdot \frac{s}{\sqrt{n}}\right] \approx[68.09,71.01]
$$

(b) Now suppose you are told that the height of a college male is normally distributed with standard deviation 3.77 in. Using the same data as in part (a), construct a 90% z-confidence interval for μ.
Solution: We have

$$
z_{\alpha / 2}=\operatorname{qnorm}(0.05)=1.6448
$$

So the $90 \% z$-confidence interval is given by

$$
\left[\bar{x}-z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right] \approx[68.16,70.94]
$$

(c) In (b), how many people in total would you need to measure to bring the width of the $90 \% z$-confidence interval down to 1 inch?
Solution: We need n such that $2 \cdot z_{0.05} \cdot \sigma / \sqrt{n}=1$. So

$$
n=\left(2 \cdot z_{0.05} \cdot \sigma\right)^{2}=(2 \cdot 1.6448 \cdot 3.77)^{2} \approx 153.8
$$

Since you need a whole number of people the answer is $n=154$.

Problem 2. (10 pts.) Confidence intervals from standardized statistics

The Beta distribution arises in a surprising way: draw a sample of size n from a uniform $(0,1)$ distribution and let w_{2} be the second smallest value. Then it turns out that

$$
w_{2} \sim \operatorname{Beta}(2, n-1) .
$$

Now suppose you draw a sample of size n from a uniform $(0, a)$ distribution, where a is unknown. If we let y_{2} be the second smallest data value then the standardized order statistic

$$
y_{2} / a \sim \operatorname{Beta}(2, n-1) .
$$

Use y_{2} and qbeta in R, to define a 95% confidence interval for a. (Because n and y_{2} are not given this will be a general formula not numbers.)

Finally, supposing $n=9$ and $y_{2}=1.5$, give the 95% confidence interval for a.
Solution: This is a problem about using a standardized statistic and 'pivoting' to compute confidence intervals. We are told that $y_{2} / a \sim \operatorname{Beta}(2, n-1)$. If $c_{0.025}$ amd $c_{0.975}$ are the critical values for $\operatorname{Beta}(2, n-1)$ then this means that

$$
P\left(\left.c_{0.975}<\frac{y_{2}}{a}<c_{0.025} \right\rvert\, a\right)=0.95 .
$$

Here, in R notation, $c_{0.975}=\operatorname{qbeta}(0.025,2, \mathrm{n}-1)$ and $c_{0.025}=\operatorname{qbeta}(0.975,2, \mathrm{n}-1)$. Doing some algebra to isolate a in the middle, this becomes

$$
P\left(\left.\frac{y_{2}}{c_{0.025}}<a<\frac{y_{2}}{c_{0.975}} \right\rvert\, a\right)=0.95 .
$$

If $n=9$ we have

$$
c_{0.025}=\operatorname{qbeta}(0.975,2,8)=0.482, \quad c_{0.975}=\operatorname{qbeta}(0.025,2,8)=0.0281
$$

So, in this case, the 95% confidence interval is

$$
\left[\frac{y_{2}}{c_{0.025}}, \frac{1.5}{c_{0.975}}\right] \approx\left[\frac{1.5}{0.482}, \frac{1.5}{0.0281}\right] \approx[3.1,53.3]
$$

Problem 3. (35: 15, 10,10 pts.) Various variances
Consider a sample of size n drawn from a Bernoulli(θ) distribution. (That is, a draw from a binomial(n, θ) distribution.) In constructing a confidence interval the conservative estimate is that the variance of the underlying Bernoulli distribution is $\sigma^{2}=1 / 4$-this is conservative because for any θ we know that $\sigma^{2} \leq 1 / 4$.
(a) In this problem we want to compare how well normal distribution using the conservative estimate matches the one using the true variance
(i) Let $\theta=0.5$ and $n=250$. Make a plot that includes

- the pmf $p(x \mid \theta)$ of the binomial (n, θ) distribution.
- the pdf of the normal distribution with the same mean and variance as the binomial ((n, θ)) distribution
- the normal distribution with the same mean (as the binomial distribution) and conservative variance to your plot.
Note: The conservative variance for a Bernoulli(θ) distribution is 1/4. So the conservative variance for a binomial (n, θ) is $n / 4$.
Note. It is not reasonable to compare the probabilities in a pmf to the densities in a pdf. In order to make them comparable, but also to make the graphs readable, you should plot the pmf as points, but think of them as the top of a density histogram with bin width 1 and breaks on the half integers.
(ii) Make a similar plot for $\theta=0.3$ and $n=250$.
(iii) Make a similar plot for $\theta=0.1$ and $n=250$.

In each case, how close are each of the normal distributions to the binomial distribution? How do the two normal distributions differ? Based on your plots, for what range of θ do you think the conservative normal distribution is a reasonable approximation for binomial(n, θ) with large n ?
Solution: We have $x \sim \operatorname{binomial}(n, \theta)$, so $E[X]=n \theta$ and $\operatorname{Var}(X)=n \theta(1-\theta)$. The conservative variance is just $\frac{n}{4}$. So the distributions being plotted are

$$
\text { binomial }(250, \theta), \quad \mathrm{N}(250 \theta, 250 \theta(1-\theta)), \quad \mathrm{N}(250 \theta, 250 / 4) .
$$

Note, the whole range is from 0 to 250 , but we only plotted the parts where the graphs were not essentially 0 .

We notice that for each θ the blue dots lie very close to the green (true variance) curve. So the $\mathrm{N}(n \theta, n \theta(1-\theta))$ distribution is quite close to the $\operatorname{binomial}(n, \theta)$ distribution for each of the values of θ considered. In fact, this is true for all θ by the Central Limit Theorem. For $\theta=0.5$ the conservative variance is the exact variance. For $\theta=0.3$ the conservative variance works well: it has smaller peak and slightly fatter tail. For $\theta=0.1$ the conservative approximation breaks down and is not very good.

In summary we can say two things about the conservative variance:

1. It gives good results for θ near 0.5 and breaks down for extreme values of θ.
2. Since the conservative variance overestimates the variance (the conservative graphs are shorter and wider) it gives us a confidence interval that is larger than is strictly necessary. That is a nominal 95% conservative interval actually has a greater than 95% confidence level.
(b) Suppose θ is the probability of success, and that the result of an experiment was 140 successes out of 250 trials. Find 80% and 95% confidence intervals for θ using the conservative variance. (For the 95% interval use the rule-of-thumb that $z_{0.025}=2$.)
Solution: Using the conservative variance, we know that \bar{x} is approximately $\mathrm{N}(\theta, 1 / 4 n)$. For an 80% confidence interval, we have $\alpha=0.2$ so

$$
z_{\alpha / 2}=\operatorname{qnorm}(0.9,0,1)=1.2815 .
$$

So the 80% confidence interval for θ is given by

$$
\left[\bar{x}-\frac{z_{0.1}}{2 \sqrt{n}}, \bar{x}+\frac{z_{0.1}}{2 \sqrt{n}}\right]=[0.5195,0.6005]
$$

For the 95% confidence interval, we use the rule-of-thumb that $z_{0.025} \approx 2$. So the confidence interval is

$$
\left[\bar{x}-\frac{1}{\sqrt{n}}, \bar{x}+\frac{1}{\sqrt{n}}\right]=[0.497,0.623]
$$

It's okay to have used the exact value of $z_{0.025}$. This gives a confidence interval:

$$
\left[\bar{x}-\frac{1.96}{2 \sqrt{n}}, \bar{x}+\frac{1.96}{2 \sqrt{n}}\right]=[0.498,0.622]
$$

(c) Using the same data as in part (b), find an 80% posterior probability interval for θ using a flat prior, i.e. Beta(1,1). Center your interval between the 0.1 and 0.9 quantiles. Compare this with the 80% confidence interval in part (b).
Hint: Use qbeta (p, a, b) to do the computation.
Solution: With prior Beta(1, 1), if we observe x successes in 250 trials, then the posterior is $\operatorname{Beta}(1+x, 1+250-x)$. In our case $x=140$. So, using R we get the 80% posterior probability interval:

$$
\text { prob_interval }=[\operatorname{qbeta}(0.1,141,111), \operatorname{qbeta}(0.9,141,111)] \approx[0.52,0.60]
$$

This is quite close to the 80% confidence interval. Though the two intervals have very different technical meanings, we see that they are consistent (and numerically close). Both give a type of estimate of θ.

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

