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GILBERT

STRANG:

Well, OK, I am happy to be back, and I am really happy about the project proposals that are

coming in. This is like, OK, this is really a good part of the course. And so keep them coming,

and I'm happy to give whatever feedback I can on those proposals, and do make a start there.

They're really good, and if some are completed before the end of the semester and we can to

offer you a chance to report on them, that that's good too. So well done with those proposals.

So today, I'm jumping to part six. So part six and part seven are optimization which is the

fundamental algorithm that goes into deep learning. So we've got to start with optimization.

Everybody has to get that picture, and then part seven will be the structure of CNNs,

Convolution Neural Nets, and all kinds of applications.

And so can we start with optimization? So first, can I like get the basic facts about three terms

of a Taylor series? So that's the typical. It's seldom that we would go up to third derivatives in

optimization.

So that's the most useful approximation to a function. Everybody recognizes it. Here, I'm

thinking of F as just one function, and x as just one variable, but now I really want to go to

more variables. So what do I have to change if F is a function of more variables? So now, I'm

thinking of x as-- well, now let me see.

Yeah, I want n variables here. x is x1 up to xn. So just to get the words straight so we can

begin on optimization, so what will be the similar step so the function F at x-- remember, x is n

variables. OK?

Now, what do I have? Delta x, so what's the point about delta x now? It's a vector, delta x1 to

delta xn, and what about the derivative of F? It's a vector too, the derivative of F with respect

to x1, the derivative of F with respect to x2, and so on.

What do I have to change about that? I know those guys are vectors, so it's their dot product.

So it's delta x transpose at vector times this dF/dx. So now I'm replacing this by all the



derivatives, and it's the gradient. So the gradient of F at x is the derivatives-- let's see.

It's essential to get the notation straight here. Yeah, so it'll be the partial derivatives of the

function F. So grad F is the partial derivatives of F with respect to x1 down to partial derivative

with respect to xn. OK, good.

That's the linear term, and now what's the quadratic term? 1/2, now delta x isn't a scalar

anymore. It's a vector. So I'm going to have delta x transpose and a delta x, and what goes in

between is the second derivatives, but I've got a function of n variables.

So now, I have a matrix of second derivatives, and I'll call it H. This is the matrix of second

derivatives, Hjk is the second derivative of F with respect to xj and xk, and what's the name for

this guy? The Hessian, Hessian matrix.

How the Hessians got into this picture I don't know. The only Hessians I know are the ones

who fought in the Revolutionary War for somebody. Who? Which side were they on? I think

maybe the wrong side. The French were on our side and--

Anyway, Hessian matrix, and what are the facts about that matrix? Well, the first fact is that it's

[INAUDIBLE] and the key fact is it's symmetric. Yeah. OK, and again, it's an approximation.

And everybody recognizes that if n is very large, and we have a function of many variables.

Then, we had n derivatives to compute here, and about 1/2 n squared derivatives.

The 1/2 comes from the symmetry, but the key point is the n squared derivatives to compute

there. So computing the gradient is feasible if n is small or moderately large. Actually, by using

automatic differentiation, the key idea of back propagation, back prop, you can speed up the

computation of derivatives quite amazingly. But still for the size of deep learning problems

that's out of reach. OK.

So that's the picture, and then I will want to use this to solve equations. There is a parallel

picture for a vector f. So now, this is a vector function. This is f1 of x up to fn of x, an x is x1 to

xn. So I have n functions of n variables, n functions of n variables.

Well, that's exactly what I have in the gradient. Think of these two as parallel, the parallel

being f corresponds to the gradient of F, n functions of n variables. OK. Now maybe, what I'm

after here is to solve f equals 0. So I'm going to think about the f at x plus delta x, so it starts

with f of x.



And then we have the correction times the matrix of first derivatives, and what's the name for

that matrix of first derivatives? Well, if I'm just given n functions-- yeah, what am I after here?

I'm looking for the Jacobian. So here we'll go the Jacobian, J. This is the Jacobian named after

Jacoby, Jacobian matrix.

And what are its entries? J, the jk entry is the derivative of the J function with respect to the kth

variable, and I'm stopping at first order there. OK, so these are sort of like facts of calculus,

facts of 18.02 you could say. Multivariable calculus, that's the point.

Notice that we're doing just like the first half of 18.02, just do differential calculus, derivatives,

Taylor series. We're not doing multiple integrals. That's not part of our world here. OK, so

that's the background.

Now, I want to look at optimization. So over here, I want to optimize-- well, over here, let me

try to minimize F of x, and I'll be in the vector case here. And over here, I want to solve f

equals 0, and of course, that means f of 1 equals 0 all the way along to fn equals 0. Here, I

have n equations, and n unknowns.

Let me start with that one, and I'll start with Newton's method, Newton's method to solve these

n equations and n unknowns. OK, so Newton, Newton's method which is often not presented

in 18.02. That's a crime, because that's the big application of gradients in Jacobians.

OK, so I'm trying to solve n equations and n unknowns, and so I want f at x plus delta x to be

0. Right? So I want f of x plus delta x to be 0. So f at x plus delta x is-- I'm putting in a 0. I'm

just copying that equation-- is f at where I am. Let me use K for the case iteration.

So I'm at a point xK. I want to get to a point xK plus 1. And so I have 0 is f of x plus J, at that

point, times delta x which is xK plus 1 minus xK. Good. That's Newton's method.

Of course, 0 isn't quite true. Well, 0 will be true if I'm constructing xK plus 1 here. I'm

constructing xK plus 1. OK. So let me just rewrite that, and we've got Newton's method. So

we're looking for this change, xK plus 1 minus xK. I'll put it on this side as plus xK, so that's

this.

Now, I have to invert that and put it on the other side of the equation. So that will go with a

minus. This guy will be inverted and f at xK. So that's Newton's methods. It's natural.

So let me just repeat that. You see where the xK plus 1 minus xK is sitting? Right? And I



moved f of xK to the other side with a minus sign, and then I multiplied through by J inverse,

so I got that. So that's Newton's method for a system of equations, and over there, I'm going

to write down Newton's method for minimizing a function. This is such basic stuff that we have

to begin here.

Let me even begin with an extremely straightforward example of Newton's method here.

Suppose my function-- suppose I've only got one function actually. Suppose I only had one

function. So suppose my function is x squared minus 9, and I want to solve f of x equals 0. I

want to find the square root of 9.

OK, so what is Newton's method for it? My point is just to see how Newton's method is written

and then rewrite it a little bit so that we see the convergence. OK, so of course, the Jacobian is

2x. So Newton's method says that xK plus 1-- I'm just going to copy that Newton's method--

minus 1 over 2xK. Right? That's the derivative times f at xK which is xK squared minus 9.

OK. We followed the formula, this determines xK plus 1, and let's simplify it. So here I have xK

minus that looks like 1/2 of xK, so I think I have 1/2xK, and then this times this is 9/2 of 1 over

xK. Is that right? 1/2 of xk from this stuff and plus 9/2 of 1 over xK. OK.

Can I just like check that I know the answer is 3? Can I be sure that I get the right answer, 3?

That if xK was exactly 3, then of course, I expect xK plus 1 to stay at 3. So does that happen?

So 1/2 of 3 and 9/2 of 1/3, what's that, 1/2 of 3 and 9/2 of 1/3?

OK, that's 3/2 and 3/2. That's 6/2, and that's 3. OK. So we've checked that the method is

consistent which just means we kept the algebra straight. But then the really important point

about Newton's method is to discover how fast it converges. So now let me do xK plus 1 minus

3.

So now, I'm looking at the error which is, I hope, approaching 0. Is it approaching 0? How

quickly is it approaching 0? These are the fundamental questions of optimization.

So I'm going to subtract 3 from both sides somehow. OK, from here, I guess, I'm going to

subtract 3. So I was just checking that it was correct. OK. Now, so xK plus 1 minus 3, I'm going

to subtract 3 from both sides. I'm going to subtract 3 there, and then I hope that-- that box is

what goes down here. Right?

Subtracted 3 from both sides, so I'm hoping now things go to 0. OK, so what do I have there?

Let me factor out the 1 over xK. So what do I have then left? 1 over xK, so there's a 9/2 from



there, 1 over xK.

So I really have 1/2 of xK squared, because I've divided by an xK. And this minus 3, I better

put minus 3xK, because I'm dividing by xK. I claim that that's-- now I've got it. And let's see, let

me take out the 2-- 2, forget these 2s, and make that a 6. So I have 1 over 2xK times 9 plus

xK squared minus 6.

Anything good about that? We hope so. We hope that that is something attractive. So this is,

again, the error at set K plus 1, and it's 1 over 2xK times this thing in brackets-- 9 plus xK

squared minus 6xK. And we recognize that as xK minus 3 squared.

xK squared minus 6 of them plus 9, that's xK minus 3 squared. OK, that was the goal, of

course. That's the goal that shows why Newton's method is fantastic. If you can execute it, if

you can start near enough, notice that-- so how do I describe this great equation? It says that

the error is squared at every step, squared at every step.

So if I'm converging to a limit, it will satisfy the-- it'll be 3, or I guess minus 3, is that possible?

Yeah, minus 3 is another solution here. So we've got two solutions. Newton's method could

converge to 3. Am I right, it could converge to minus 3?

So I'd have a similar equation sort of centered at minus 3, or does it always do one of those? It

could blow up. So there are sort of regions of attraction. They're all the starting points that

approach 3, and the whole point of that equation is with quadratic convergence the error being

squared at every step. It zooms in on 3.

Then, there is all the starting points that would go to minus 3, and then there are the starting

points that would blow up. And those, maybe for this very simple problem, the picture is not

too difficult to sort out those three regions. And this is allowing for a vector, two equations or n

equations, then we're in n variables, and really you get beautiful pictures.

You get some of the type of pictures that gave rise to these books on fractals, picture books

on fractals for these basins of attraction. Does the starting point lead you to one of the

solutions, or does it lead you to infinity? Here, that would be interesting to just draw it for this,

but the essential point is the quadratic convergence, if it's close enough.

You see that it has to be close. If x0 is pretty near 3, then this is about 1/6 of that, and there

would be a good region of attraction in this case. OK. So that's Newton's method for



equations.

And now I want to do Newton's method. I just want to convert all those words over to Newton's

method for optimization. So remember, these boards were solving f equals 0. This board is

minimizing capital F, and what's the connection between them? Well of course, this

corresponds to solving the gradient equals 0.

At a minimum, if I'm minimizing, I'm finding a point where all the first derivatives are 0. So that

will be the match between these. This grad F in this picture is the small f in that picture. OK.

Now, I guess here I have-- and this is sort of the heart of our applications to deep learning--

we have very complicated loss functions to minimize, functions of thousands or hundreds of

thousands of variables. OK. So that means that we would like to use Newton's method, but

often we can't. So I need him to put down here two methods-- one that doesn't involve those

high second derivatives and Newton's that does.

So first, I'll write down a method that does not involve, so method one, and this will be steepest

descent. And what is that? That says that xK plus 1-- the new x is the old x minus-- steepest

descent means that I move in the steepest direction which is the direction of the gradient of F.

I move some distance, and I better have freedom to decide what that distance should be. So

this is a step size, s, or in the language of deep learning, it's often called the learning rate, so if

you see learning rate. OK.

So and it's natural to choose sK. We're going along, do you see what this right-hand side looks

like? I'm at a point in n dimensions. We're in n dimensions here. We have functions of n

variables.

There is a vector. There is a direction to move down the steepest slope of the graph. And here

is a distance to move, and we will stop. We'll have to get off this step, normally. If we stay on it,

it will swing back, it'll take us off to infinity.

You would like to choose sK so that you minimize capital F. You take the point on this line, so

this a line in R n, a direction in R n. And for all the points on that line, in that direction, F has

some value, and what you expect is that initially, because you chose it sensibly, the value of F

will drop. But then at a certain point, it will turn back on you and increase.

So that would be the natural stopping point. I would call that an exact line search. So I exact

line search would be, exact line search is the best s. Of course, that would take time to



compute, and you probably, in deep learning, that's time you can't afford, so you fix the

learning rate s. Maybe you choose 0.01 to be pretty safe.

OK, so that's method one, steepest descent. Now, method two will be Newton's method. So

now, we have xK plus 1 equal to xK minus something times delta F, and now I'm going to do

the right thing. I'm going to live right here, and the right thing is the Hessian, the second

derivative.

This was cheap. We just took the direction and went along it. Now, we're getting really the right

direction by using the second derivative, so that's H inverse. OK, and what I've done is to set

that 0.

Do you see that's Newton's method? It's totally parallel to this guy. Actually, I'm really happy to

have these two on the board parallel to each other, because you have to keep straight, are

you solving equations, or are you minimizing functions? And you're using different letters in the

two problems, but now you see how they match.

The Jacobian of-- so again the matches, think of f as the gradient of F. That's the way you

should think of it. So the Jacobian of the gradient is the Hessian. The Jacobian of the gradient

is the Hessian, and that makes sense, because the first derivative of the first derivative is the

second derivative. Only we're doing matrix y, so the Jacobian of the gradient-- we're doing a

vector matrix sentence instead of a scalar sentence-- the Jacobian of the gradient is a

Hessian. Yeah, right.

OK, so that's what I wanted to start with, just to get those basic facts down. And so the basic

facts were the three-term Taylor series. And then the basic algorithms followed naturally from

it by setting f F at the new point to 0, if that's what you were solving or by assuming you had

the minimum. Right, good, good, good, good. OK.

Now, what? Now, we have to think about solving these problems, studying. Do they converge?

What rate do they converge? Well, the rate of convergence is like why I separated off this

example.

So the convergence rate for Newton's method will be quadratic. The error gets squared, and

of course, that means super-fast convergence, if you start and close enough. The rate of

convergence for a steepest descent is, of course, not. You're not squaring errors here,

because you're just taking some number instead of the inverse of the correct matrix, so you



can't expect super speed.

So a linear rate of convergence would be right. You would like to know that the error is

multiplied at every step by some constant below 1. That would be a linear rate compared to

being squared at every step. OK, and so this will be our basic formula that we build on for

really large scale problems.

And there are methods, of course, people are going to come up with methods that they're sort

of a cheap Newton's method. Levenberg-Marquardt, and it's in the notes at the end of this

section, at the end of 6.4 that we'll get to. So Levenberg-Marquardt is a sort of cheap man's

Newton's method. It does not compute to Hessian, but it says, OK, from the gradient, I can see

one term in the Hessian. So it grabs that term, but it's not fully second order.

OK. So now, we have to think about problems, and I guess the message here is, at our

starting point, has to be convexity. Convexity is the key word for these problems, for the

function that we want to minimize. If that's a convex function, well first of all, the convex

function is likely to have one minimum. And the picture that's in our mind of steepest descent,

this picture of a bowl, a bowl is the graph of the convex function.

So I'm turning to convexity now. I'll leave that board there, because that's pretty crucial, and

speak about the idea of convexity. Convex function, convex set, so let's call the function f of x,

and a typical convex set would be I'll call it K. OK. So we just want to remember what does that

word can convex mean, and how do you know if you have a convex function or a convex set?

OK, let me start with convex set. So because here is my general problem, my convex

minimization, which you hope to have, and in many applications, you do have. So you

minimize a convex function for points in a convex set. So that's like the ideal situation. That's

the ideal situation, to get something on your side, something powerful, convexity.

The function is convex, and you say, well, let me draw a convex function, the graph. OK, so I'll

draw a convex function, say a bowl. So that's a graph of f of x, and then here are the x's. Let

me maybe put x1 and x2 in the base and the graph of f of 1x x2 up here. OK. Actually, I'm

over there.

I should be calling this function F, I think. Is that right? Yeah, a little f would be the gradient of

this guy. Yeah, I think so. OK.



Now, I'm minimizing it over certain x's, not all x's. I might be minimizing, for example, K might

be the set where Ax equals B. K might be, in that case, a subspace or a shifted subspace. I

said subspace, but then 18.06 is reminding me in my mind that I only have a subspace when B

is 0.

You know the word for a subspace that's sort of moved over? Affine, so I'll just put that word

down here. Bunch of words to learn for this topic, but they're worth learning. OK.

So it's like a plane but not necessarily through the origin. If B is 0, it doesn't go through it. If B

it's not 0, it doesn't go through the origin. OK. Anyway, or I have some other convex set. Let

me just put this convex set K in the base for you, and did I make it convex? I think pretty luckily

I did.

So now what's the? Well, the convex sets the constraint, so this is the constraint set.

Constraint is that x must be in the set K. OK, and I drew it as a convex blob. Here was an

example where it's flat, not a blob but a flat plane.

But let me come back to what does convex mean. What's a convex set? Yeah, we have to do

that, should have done that before. In the notes, I had the fun of figuring out, if I took a

triangle, is that a convex set? Let's just be sure.

So what's a convex set? That is a convex set, because if I take any two points in the set and

draw the line between them, it stays in the set. So that's convexity, any edge, line, from x1 to

x2 stays in the set. OK, good.

So here's my little exercise to myself. What if I took the union of two triangles? All I want to get

you to do is just visualize convex and not convex possibilities. Suppose I have one triangle,

even if it was obtuse, that's still convex, right? No problem.

But now what if I put those two triangles together, take their union? Well, if I take them sitting

with a big gap between, like I've lost. I mean, I never had a chance that way, because if it was

the union of these two-- well, you know what I'm going to say. If I'm doing that point and that

point, of course, it goes outside and stupid. All right.

What if what if that triangle, that lower triangle, overlaps the upper triangle? Is that a convex

set? Everybody's right saying no. Why how do I see that the union of those two triangles is not

a convex set? Guys, you tell me where to pick two points, where the line goes out. Well, I take

one from that corner and one from that corner, and the line between them went outside. So



union is usually not convex.

Well, if I think of the union of two sets, my mind automatically goes to the other corresponding

possibility which is the intersection of the two sets. So if I take the intersection of two sets.

Now, what's the deal with that? When I had two triangles, two separated triangles, what can

we say about the intersection of those two triangles?

AUDIENCE: [INAUDIBLE]

GILBERT

STRANG:

It's empty. So should we regard the empty set as a convex set? Yes. Isn't it?

AUDIENCE: Yeah, it's vacuous.

GILBERT

STRANG:

Vacuous, so it hasn't got any problems. Right? OK, but now the intersection is always convex.

I'm assuming the two sets that we start with are. Now, that's an important fact, that the

intersection of convex sets. Let's just draw a picture that shows an example.

So what's the intersection? Just this part and it's convex. OK, can you give me a little proof

that the intersection is convex? So I take two points in the intersection-- let me start the proof.

To test if something's convex, how do you test it? You take two points in the set in the

intersection, and you want to show that the line between them is in the intersection. OK, why is

that?

So take two points, take x1 in the intersection. We've got two sets here, and that's the symbol

for intersection, and we've got another point in the intersection. And now, we want to look at

the line between them, the line from x1 to 2x. What's the deal with that one? Is that fully in K1?

AUDIENCE: Yes.

GILBERT

STRANG:

Why is it fully in K1? I took two points in the intersection, I'm looking at the line between them,

and I'm asking, is it in the first set K1? And the answer is yes, because those points were in

K1, and K1's convex. And is that line between them in K2? Yes, same reason, the two

endpoints were in K2, so the line between them is in K2.

So the intersection of convex sets is always convex. The intersection of convex sets is convex.

Good. So you'll see in the note these possibilities with two triangles. Sometimes, you can take

the union but not very often. OK.



the union but not very often. OK.

Now, what's the next thing I have to do? Convex functions, we got convex sets, what are

convex functions, and we're good. Because this is our prototype of a problem, and I now want

to know what it means for that F to be-- oh, I'm sorry. I now know what it means for the set K

to be convex set, but now I have to look at the other often more important part of the problem.

What's the function I'm minimizing, and I'm looking for functions with this kind of a picture. OK.

The coolest way is to connect the definition of a convex function to the definition of a convex

set. This is really the nicest way. It's a little quick. It just swishes by you. But tell me, do you

see a convex set in that picture? [INAUDIBLE]

You see a convex set in that picture. That's the picture of a graph of a convex function. It's a

picture of a bowl. Are the points on that surface, is that a convex set? No, certainly not. No, but

where is a convex set to be found here, in that picture? Yes.

AUDIENCE: The set of y, if y is greater than [INAUDIBLE]

GILBERT

STRANG:

Yes, the points on and above the bowl, inside the bowl, we could say, these points. So convex

function, yes, a function's convex when the points on and above the graph are convex set.

You could say, OK, mathematicians are just being lazy. Having got one definition straight for a

convex set, now they're just using that to give an easy definition of a convex function. Actually,

it's quite useful for functions that could maybe equal infinity, sort of generalized functions.

But it's not the quickest way to tell if the function is convex. It's not our usual test for convex

functions. So now I want to give such a test. OK. So now, the definition of convex function, of a

smooth convex, yeah. This fact, I shouldn't rush off away from it, from the definition of a

convex function as having a convex set above its graph. The really official French name for

the set above the graph is the epigraph, but I won't even write that word down. OK.

Why do I come back to that for a minute? Because I would like to think about two functions, F1

and F2. Out of two functions, I can always create the minimum or the maximum.

So suppose I have to convex functions, convex function F1 and F2. OK. Then, I could choose

a minimum. I could choose my new function. Shall I call it little m for minimum? m of x is the

minimum of F1 and F2.

And I could choose a maximum function which would be the maximum of F1 of x and F2 of x

at the same point x. It's just a natural to think, OK, I have two functions. I've got a bowl and I've



got another bowl, and suppose they're both convex.

So I'm just stretching you to think here. If I've got the graphs of two convex functions, and I

would like to consider the minimum of those two functions and also the maximum of those two

functions. I believe life is good. One of these will be convex, and the other won't.

And can you identify which one is convex and which one is not convex? What about the

minimum? Is that a convex function? So just look at the graph. What does the minimum look

like? The minimum is this guy until they meet somehow on some surface and then this guy.

Is that convex? We have like one minute to answer that question. Absolutely no. It's got this

bad kink in it. What about the maximum of the two functions? So the maximum is the one that

is above, all the points or things that are above or on.

There is the maximum function. That was the minimum function. It had a kink. The maximum

function is like that, and it is convex, so maximum yes, minimum no. OK, and we could have a

maximum of 1,500 functions. If the 1,500 functions are all convex, the maximum will be,

because it's the part way above everybody's graph, and that would be the graph of the

maximum. OK, good.

And now finally, let me just say, how do you know whether a function is convex? How to test,

how of test. OK, so let me take just a function of one variable. What's the test you learned in

calculus, freshman calculus actually, just show that this is a convex function? What's the test

for that?

AUDIENCE: Use second derivative.

GILBERT

STRANG:

Second derivative should be?

AUDIENCE: Positive.

GILBERT

STRANG:

Positive or possibly 0, so second derivative greater or equals 0 everywhere. That's convex.

OK, final question, suppose F is a vector. So this is a vector, and so I have n functions of n

variable. No, I don't. I have one, sorry, I've got one function, but I'm in n variables. So this was

just one.

What's the test for convexity? So it would be passed, for example, by x1 squared plus x2



squared. Would it be passed by-- so here would be the question-- would it be passed by x

transpose some symmetric matrix S? That would be a quadratic, a pure quadratic.

Would it be convex? What would be the test? I'm looking for an n dimensional equivalent of

positive second derivative. The n dimensional equivalent of positive second derivative is

convexity, and we have to recognize what's the test. So I could apply it to this function, or I

could apply it to any function of n variables. It should be OK.

What's the test here? Here, I have a matrix instead of a number. So what's the requirement

going to be? Times out, yeah? [INAUDIBLE] Positive definite or semidefinite, or semidefinite

just as here. Yeah.

So the test is positive, semidefinite, Hessian. And here, the Hessian is actually that S, because

the second derivatives will produce-- I'll put a 1/2 in there-- the second derivatives will produce

S equal the Hessian H. So here, the S-- so positive semidefinite, Hessian in general, second

derivative matrix for a quadratic.

OK. So its convex problems that we're going to get farther with. We run into no saddle points.

We run into no local minimum. Once we found the minimum, it's the global minimum. These

are the good problems. OK, again, happy to see you today, and I look forward to Wednesday.


