Problem Sets Related to Lectures and Readings

LEC $\#$	TITLE	Reading	Assignment
1	The Column Space of A Contains All Vectors $A x$	Section I.1	Problem Set I.1
2	Multiplying and Factoring Matrices	Section I. 2	Problem Set I.2
3	Orthonormal Columns In Q Give Q'Q=I	Section I.5	Problem Set I.5
4	Eigenvalues and Eigenvectors	Section I.6	Problem Set I.6
5	Positive Definite and Semidefinite Matrices	Singular Value Decomposition (SVD)	Section I. 7

21	Minimizing a Function Step by Step	Sections VI.1, VI. 4	Problem Set VI. 1
22	Gradient Descent: Downhill to a Minimum	Section VI. 4	Problem Set VI. 4 Problems 1, 6
23	Accelerating Gradient Descent (Use Momentum)	Section VI.4)	Problem Set VI. 4 Problem 5
24	Linear Programming and TwoPerson Games	Sections VI.2-VI. 3	Problem Set VI. 2 Problem 1 Problem Set VI. 3 Problems 2, 5
25	Stochastic Gradient Descent	Section VI. 5	Problem Set VI. 5
26	Structure of Neural Nets for Deep Learning	Section VII. 1	Problem Set VII. 1
27	Backpropagation to Find Derivative of the Learning Function	Section VII. 2	Problem Set VII. 2
28	Computing in Class	Section VII. 2 and Appendix 3	[No Problems Assigned]
29	[No Video Recorded]	$\begin{gathered} \text { No } \\ \text { Readings } \end{gathered}$	[No Problems Assigned]
30	Completing a Rank-One Matrix / Circulants!	Sections IV.8, IV. 2	$\frac{\text { Problem Set IV. } 8}{\text { Problem Set IV. } 2}$
31	Eigenvectors of Circulant Matrices: Fourier Matrix	Section IV. 2	Problem Set IV. 2
32	ImageNet is a CNN / The Convolution Rule	Section IV. 2	Problem Set IV. 2
33	Neural Nets and the Learning Function	Sections VII.1, IV. 10	$\frac{\text { Problem Set VII. } 1}{\text { Problem Set IV. } 10}$
34	Distance Matrices / Procrustes Problem / First Project	Sections IV.9, IV. 10	Problem Set IV. 9
35	Finding Clusters in Graphs / Second Project: Handwriting	Sections $\text { IV.6-IV. } 7$	Problem Set IV. 6
36	Third Project / Alan Edelman and Julia Language	Sections III.3, VII. 2	[No Problems Assigned]

Problems for Lecture 1 (from textbook Section I.1)

1 Give an example where a combination of three nonzero vectors in \mathbf{R}^{4} is the zero vector. Then write your example in the form $A \boldsymbol{x}=\mathbf{0}$. What are the shapes of A and \boldsymbol{x} and $\mathbf{0}$?

4 Suppose A is the 3 by 3 matrix ones $(3,3)$ of all ones. Find two independent vectors \boldsymbol{x} and \boldsymbol{y} that solve $A \boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{A} \boldsymbol{y}=\mathbf{0}$. Write that first equation $A \boldsymbol{x}=\mathbf{0}$ (with numbers) as a combination of the columns of A. Why don't I ask for a third independent vector with $A \boldsymbol{z}=\mathbf{0}$?
$9 \quad$ Suppose the column space of an m by n matrix is all of \mathbf{R}^{3}. What can you say about m ? What can you say about n ? What can you say about the rank r ?

18 If $A=C R$, what are the $C R$ factors of the matrix $\left[\begin{array}{ll}0 & A \\ 0 & A\end{array}\right]$?

Problems for Lecture 2 (from textbook Section I.2)

2 Suppose \boldsymbol{a} and \boldsymbol{b} are column vectors with components a_{1}, \ldots, a_{m} and b_{1}, \ldots, b_{p}. Can you multiply \boldsymbol{a} times $\boldsymbol{b}^{\mathrm{T}}$ (yes or no)? What is the shape of the answer $\boldsymbol{a} \boldsymbol{b}^{\mathrm{T}}$? What number is in row i, column j of $\boldsymbol{a} \boldsymbol{b}^{\mathrm{T}}$? What can you say about $\boldsymbol{a} \boldsymbol{a}^{\mathrm{T}}$?

6 If A has columns $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$ and $B=I$ is the identity matrix, what are the rank one matrices $\boldsymbol{a}_{1} \boldsymbol{b}_{1}^{*}$ and $\boldsymbol{a}_{2} \boldsymbol{b}_{2}^{*}$ and $\boldsymbol{a}_{3} \boldsymbol{b}_{3}^{*}$? They should add to $A I=A$.

Problems for Lecture 3 (from textbook Section I.5)

2 Draw unit vectors \boldsymbol{u} and \boldsymbol{v} that are not orthogonal. Show that $\boldsymbol{w}=\boldsymbol{v}-\boldsymbol{u}\left(\boldsymbol{u}^{\mathrm{T}} \boldsymbol{v}\right)$ is orthogonal to \boldsymbol{u} (and add \boldsymbol{w} to your picture).

4 Key property of every orthogonal matrix: $\|Q \boldsymbol{x}\|^{2}=\|\boldsymbol{x}\|^{2}$ for every vector \boldsymbol{x}. More than this, show that $(Q \boldsymbol{x})^{\mathrm{T}}(Q \boldsymbol{y})=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}$ for every vector \boldsymbol{x} and \boldsymbol{y}. So lengths and angles are not changed by Q. Computations with Q never overflow !

6 A permutation matrix has the same columns as the identity matrix (in some order). Explain why this permutation matrix and every permutation matrix is orthogonal: $P=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]$ has orthonormal columns so $P^{\mathrm{T}} P=$ \qquad and $P^{-1}=$ \qquad .

When a matrix is symmetric or orthogonal, it will have orthogonal eigenvectors. This is the most important source of orthogonal vectors in applied mathematics.

Problems for Lecture 4 (from textbook Section I.6)

2 Compute the eigenvalues and eigenvectors of A and A^{-1}. Check the trace!

$$
A=\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right] \quad \text { and } \quad A^{-1}=\left[\begin{array}{rr}
-1 / 2 & 1 \\
1 / 2 & 0
\end{array}\right]
$$

A^{-1} has the \qquad eigenvectors as A. When A has eigenvalues λ_{1} and λ_{2}, its inverse has eigenvalues \qquad .

11 The eigenvalues of \boldsymbol{A} equal the eigenvalues of $\boldsymbol{A}^{\mathbf{T}}$. This is because $\operatorname{det}(A-\lambda I)$ equals $\operatorname{det}\left(A^{\mathrm{T}}-\lambda I\right)$. That is true because \qquad . Show by an example that the eigenvectors of A and A^{T} are not the same.

15 (a) Factor these two matrices into $A=X \Lambda X^{-1}$:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right]
$$

(b) If $A=X \Lambda X^{-1}$ then $A^{3}=(\quad)(\quad)(\quad)$ and $A^{-1}=(\quad)(\quad)(\quad)$.

Problems for Lecture 5 (from textbook Section I.7)

3 For which numbers b and c are these matrices positive definite?

$$
S=\left[\begin{array}{ll}
1 & b \\
b & 9
\end{array}\right] \quad S=\left[\begin{array}{ll}
2 & 4 \\
4 & c
\end{array}\right] \quad S=\left[\begin{array}{cc}
c & b \\
b & c
\end{array}\right]
$$

With the pivots in D and multiplier in L, factor each A into $L D L^{\mathrm{T}}$.
14 Find the 3 by 3 matrix S and its pivots, rank, eigenvalues, and determinant:

$$
\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right][S]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=4\left(x_{1}-x_{2}+2 x_{3}\right)^{2}
$$

15 Compute the three upper left determinants of S to establish positive definiteness. Verify that their ratios give the second and third pivots.

$$
\text { Pivots }=\text { ratios of determinants } \quad S=\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 5 & 3 \\
0 & 3 & 8
\end{array}\right]
$$

Problems for Lecture 6 (from textbook Section I.8)

1 A symmetric matrix $S=S^{\mathrm{T}}$ has orthonormal eigenvectors \boldsymbol{v}_{1} to \boldsymbol{v}_{n}. Then any vector \boldsymbol{x} can be written as a combination $\boldsymbol{x}=c_{1} \boldsymbol{v}_{1}+\cdots+c_{n} \boldsymbol{v}_{n}$. Explain these two formulas:

$$
\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}=c_{1}^{2}+\cdots+c_{n}^{2} \quad \quad \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}=\lambda_{1} c_{1}^{2}+\cdots+\lambda_{n} c_{n}^{2}
$$

6 Find the σ 's and \boldsymbol{v} 's and \boldsymbol{u} 's in the SVD for $A=\left[\begin{array}{ll}3 & 4 \\ 0 & 5\end{array}\right]$. Use equation (12).

Problems for Lecture 7 (from textbook Section I.9)

2 Find a closest rank-1 approximation to these matrices (L^{2} or Frobenius norm) :

$$
A=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \quad A=\left[\begin{array}{ll}
0 & 3 \\
2 & 0
\end{array}\right] \quad A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

10 If A is a 2 by 2 matrix with $\sigma_{1} \geq \sigma_{2}>0$, find $\left\|A^{-1}\right\|_{2}$ and $\left\|A^{-1}\right\|_{F}^{2}$.

Problems for Lecture 8 (from textbook Section I.11)

1 Show directly this fact about ℓ^{1} and ℓ^{2} and ℓ^{∞} vector norms: $\|\boldsymbol{v}\|_{2}^{2} \leq\|\boldsymbol{v}\|_{1}\|\boldsymbol{v}\|_{\infty}$.
7 A short proof of $\|A B\|_{F} \leq\|A\|_{F}\|B\|_{F}$ starts from multiplying rows times columns : $\left|(A B)_{i j}\right|^{2} \leq \|$ row i of $A\left\|^{2}\right\|$ column j of $B \|^{2}$ is the Cauchy-Schwarz inequality Add up both sides over all i and j to show that $\|A B\|_{F}^{2} \leq\|A\|_{F}^{2}\|B\|_{F}^{2}$.

Problems for Lecture 9 (from textbook Section II.2)

2 Why do A and A^{+}have the same rank? If A is square, do A and A^{+}have the same eigenvectors? What are the eigenvalues of A^{+}?

8 What multiple of $\boldsymbol{a}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ should be subtracted from $\boldsymbol{b}=\left[\begin{array}{l}4 \\ 0\end{array}\right]$ to make the result \boldsymbol{A}_{2} orthogonal to \boldsymbol{a} ? Sketch a figure to show $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{A}_{2}.

9 Complete the Gram-Schmidt process in Problem 8 by computing $\boldsymbol{q}_{1}=\boldsymbol{a} /\|\boldsymbol{a}\|$ and $\boldsymbol{q}_{2}=\boldsymbol{A}_{\mathbf{2}} /\left\|\boldsymbol{A}_{\mathbf{2}}\right\|$ and factoring into $Q R$:

$$
\left[\begin{array}{ll}
1 & 4 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{q}_{1} & \boldsymbol{q}_{2}
\end{array}\right]\left[\begin{array}{cc}
\|\boldsymbol{a}\| & ? \\
0 & \left\|\boldsymbol{A}_{\mathbf{2}}\right\|
\end{array}\right]
$$

The backslash command $A \backslash \boldsymbol{b}$ is engineered to make A block diagonal when possible.

Problems for Lecture 10 (from textbook Introduction Chapter 2)

Problems 12 and $\mathbf{1 7}$ use four data points $\boldsymbol{b}=(0,8,8,20)$ to bring out the key ideas.

Figure II.3: The closest line $C+D t$ in the $t-b$ plane matches $C \boldsymbol{a}_{1}+D \boldsymbol{a}_{2}$ in \mathbf{R}^{4}.

12 With $b=0,8,8,20$ at $t=0,1,3,4$, set up and solve the normal equations $A^{\mathrm{T}} A \widehat{\boldsymbol{x}}=A^{\mathrm{T}} \boldsymbol{b}$. For the best straight line in Figure II.3a, find its four heights p_{i} and four errors e_{i}. What is the minimum squared error $E=e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}$?
17 Project $\boldsymbol{b}=(0,8,8,20)$ onto the line through $\boldsymbol{a}=(1,1,1,1)$. Find $\widehat{x}=\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b} / \boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}$ and the projection $\boldsymbol{p}=\widehat{x} \boldsymbol{a}$. Check that $\boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}$ is perpendicular to \boldsymbol{a}, and find the shortest distance $\|\boldsymbol{e}\|$ from \boldsymbol{b} to the line through \boldsymbol{a}.

Problems for Lecture 11 (from textbook Section I.11) Problem Set I. 11

6 The first page of I. 11 shows unit balls for the ℓ^{1} and ℓ^{2} and ℓ^{∞} norms. Those are the three sets of vectors $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$ with $\|\boldsymbol{v}\|_{1} \leq 1,\|\boldsymbol{v}\|_{2} \leq 1,\|\boldsymbol{v}\|_{\infty} \leq 1$. Unit balls are always convex because of the triangle inequality for vector norms :

$$
\text { If }\|\boldsymbol{v}\| \leq 1 \text { and }\|\boldsymbol{w}\| \leq 1 \text { show that }\left\|\frac{\boldsymbol{v}}{2}+\frac{\boldsymbol{w}}{2}\right\| \leq 1
$$

Problem Set II. 2

10 What multiple of $a=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ should be subtracted from $\boldsymbol{b}=\left[\begin{array}{l}4 \\ 0\end{array}\right]$ to make the result $\boldsymbol{A}_{\mathbf{2}}$ orthogonal to \boldsymbol{a} ? Sketch a figure to show $\boldsymbol{a}, \boldsymbol{b}$, and $\boldsymbol{A}_{\mathbf{2}}$.

Problem for Lecture 12 (from textbook Section II.1)

These problems start with a bidiagonal n by n backward difference matrix $D=I-S$. Two tridiagonal second difference matrices are $D D^{\mathrm{T}}$ and $A=-S+2 I-S$. The shift S has one nonzero subdiagonal $S_{i, i-1}=1$ for $i=2, \ldots, n$. A has diagonals $-1,2,-1$.

1 Show that $D D^{\mathrm{T}}$ equals A except that $1 \neq 2$ in their $(1,1)$ entries. Similarly $D^{\mathrm{T}} D=A$ except that $1 \neq 2$ in their (n, n) entries.

Problems for Lecture 13 (from textbook Section II.4)

1 Given positive numbers a_{1}, \ldots, a_{n} find positive numbers $p_{1} \ldots, p_{n}$ so that $p_{1}+\cdots+p_{n}=1 \quad$ and $\quad V=\frac{a_{1}^{2}}{p_{1}}+\cdots+\frac{a_{n}^{2}}{p_{n}}$ reaches its minimum $\left(a_{1}+\cdots+a_{n}\right)^{2}$. The derivatives of $L(p, \lambda)=V-\lambda\left(p_{1}+\cdots+p_{n}-1\right)$ are zero as in equation (8).

4 If $M=11^{\mathrm{T}}$ is the n by n matrix of 1 's, prove that $n I-M$ is positive semidefinite. Problem 3 was the energy test. For Problem 4, find the eigenvalues of $n I-M$.

Problems for Lecture 14 (from textbook Section III.1)

1 Another approach to $\left(I-\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}\right)^{-1}$ starts with the formula for a geometric series : $(1-x)^{-1}=1+x+x^{2}+x^{3}+\cdots$. Apply that formula when $x=\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}=$ matrix :

$$
\begin{aligned}
\left(I-\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}\right)^{-1} & =I+\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}+\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}} \boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}+\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}} \boldsymbol{u} \boldsymbol{v}^{\mathrm{T}} \boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}+\cdots \\
& =I+\boldsymbol{u}\left[1+\boldsymbol{v}^{\mathrm{T}} \boldsymbol{u}+\boldsymbol{v}^{\mathrm{T}} \boldsymbol{u} \boldsymbol{v}^{\mathrm{T}} \boldsymbol{u}+\cdots\right] \boldsymbol{v}^{\mathrm{T}}
\end{aligned}
$$

Take $x=\boldsymbol{v}^{\mathrm{T}} \boldsymbol{u}$ to see $I+\frac{\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}}{1-\boldsymbol{v}^{\mathrm{T}} \boldsymbol{u}}$. This is exactly equation (1) for $\left(I-\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}\right)^{-1}$.
4 Problem 3 found the inverse matrix $M^{-1}=\left(A-\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}\right)^{-1}$. In solving the equation $M \boldsymbol{y}=\boldsymbol{b}$, we compute only the solution \boldsymbol{y} and not the whole inverse matrix M^{-1}. You can find \boldsymbol{y} in two easy steps :

Step 1 Solve $A \boldsymbol{x}=\boldsymbol{b}$ and $A \boldsymbol{z}=\boldsymbol{u}$. Compute $D=1-\boldsymbol{v}^{\mathrm{T}} \boldsymbol{z}$.
Step 2 Then $\boldsymbol{y}=\boldsymbol{x}+\frac{\boldsymbol{v}^{\mathrm{T}} \boldsymbol{x}}{D} \boldsymbol{z}$ is the solution to $M \boldsymbol{y}=\left(A-\boldsymbol{u}^{\mathrm{T}}\right) \boldsymbol{y}=\boldsymbol{b}$.
Verify $\left(A-\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}\right) \boldsymbol{y}=\boldsymbol{b}$. We solved two equations using \boldsymbol{A}, no equations using \boldsymbol{M}.

Problems for Lecture 15 (from textbook Sections III.1-III.2)

1 A unit vector $\boldsymbol{u}(t)$ describes a point moving around on the unit sphere $\boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}=1$. Show that the velocity vector $d \boldsymbol{u} / d t$ is orthogonal to the position: $\boldsymbol{u}^{\mathrm{T}}(d \boldsymbol{u} / d t)=0$.

2 Suppose you add a positive semidefinite rank two matrix to S. What interlacing inequalities will connect the eigenvalues λ of S and α of $S+\boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}+\boldsymbol{v} \boldsymbol{v}^{\mathrm{T}}$?

5 Find the eigenvalues of A_{3} and A_{2} and A_{1}. Show that they are interlacing:

$$
A_{3}=\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right] \quad A_{2}=\left[\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right] \quad A_{1}=[1]
$$

Problems for Lecture 16 (from textbook Sections III.1-III.2)

3
(a) Find the eigenvalues $\lambda_{1}(t)$ and $\lambda_{2}(t)$ of $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right]+t\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.
(b) At $t=0$, find the eigenvectors of $A(0)$ and verify $\frac{d \lambda}{d t}=\boldsymbol{y}^{\mathrm{T}} \frac{d A}{d t} \boldsymbol{x}$.
(c) Check that the change $A(t)-A(0)$ is positive semidefinite for $t>0$. Then verify the interlacing law $\lambda_{1}(t) \geq \lambda_{1}(0) \geq \lambda_{2}(t) \geq \lambda_{2}(0)$.

12 If $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}>0$ for all $\boldsymbol{x} \neq \mathbf{0}$ and C is invertible, why is $(C \boldsymbol{y})^{\mathrm{T}} S(C \boldsymbol{y})$ also positive ? This shows again that if S has all positive eigenvalues, so does $C^{\mathrm{T}} S C$.

Problems for Lecture 17 (from textbook Section III.3)

2 Show that the evil Hilbert matrix H passes the Sylvester test $A H-H B=C$

$$
H_{i j}=\frac{1}{i+j-1} \quad A=\frac{1}{2} \operatorname{diag}(1,3, \ldots, 2 n-1) \quad B=-A \quad C=\operatorname{ones}(n)
$$

6 If an invertible matrix X satisfies the Sylvester equation $A X-X B=C$, find a Sylvester equation for X^{-1}.

Problems for Lecture 18 (from textbook Section III.2)

$4 \quad S$ is a symmetric matrix with eigenvalues $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{n}$ and eigenvectors $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots, \boldsymbol{q}_{n}$. Which i of those eigenvectors are a basis for an i-dimensional subspace Y with this property: The minimum of $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x} / \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}$ for \boldsymbol{x} in Y is λ_{i}.

10 Show that this $2 n \times 2 n$ KKT matrix H has n positive and n negative eigenvalues:

The first n pivots from S are positive. The last n pivots come from $-C^{\mathrm{T}} S^{-1} C$.

Problems for Lecture 19 (from textbook Sections III. 2 and V.1)

3 We know: $\frac{1}{3}$ of all integers are divisible by 3 and $\frac{1}{7}$ of integers are divisible by 7 . What fraction of integers will be divisible by 3 or 7 or both?

8 Equation (4) gave a second equivalent form for S^{2} (the variance using samples):

$$
\boldsymbol{S}^{\mathbf{2}}=\frac{1}{N-1} \operatorname{sum} \text { of }\left(x_{i}-m\right)^{2}=\frac{1}{N-1}\left[\left(\operatorname{sum} \text { of } x_{i}^{2}\right)-N m^{2}\right]
$$

Verify the matching identity for the expected variance $\sigma^{2}\left(\right.$ using $\left.m=\Sigma p_{i} x_{i}\right)$:

$$
\sigma^{2}=\operatorname{sum} \text { of } p_{i}\left(x_{i}-m\right)^{2}=\left(\operatorname{sum} \text { of } p_{i} x_{i}^{2}\right)-m^{2}
$$

Problems for Lecture 20 (from textbook Section V.1)

10 Computer experiment: Find the average $A_{1000000}$ of a million random 0-1 samples! What is your value of the standardized variable $X=\left(A_{N}-\frac{1}{2}\right) / 2 \sqrt{N}$?

12 For any function $f(x)$ the expected value is $\mathrm{E}[f]=\sum p_{i} f\left(x_{i}\right)$ or $\int p(x) f(x) d x$ (discrete or continuous probability). The function can be x or $(x-m)^{2}$ or x^{2}. If the mean is $\mathrm{E}[x]=m$ and the variance is $\mathrm{E}\left[(x-m)^{2}\right]=\sigma^{2}$ what is $\mathbf{E}\left[\boldsymbol{x}^{2}\right]$?

Problem for Lecture 20 (from textbook Section V.3)

3 A fair coin flip has outcomes $X=0$ and $X=1$ with probabilities $\frac{1}{2}$ and $\frac{1}{2}$. What is the probability that $X \geq 2 \bar{X}$? Show that Markov's inequality gives the exact probability $\bar{X} / 2$ in this case.

Problems for Lecture 21 (from textbook Sections VI. 1 and VI.4)

1 When is the union of two circular discs a convex set? Or two squares?
$5 \quad$ Suppose K is convex and $F(x)=1$ for x in K and $F(x)=0$ for x not in K. Is F a convex function? What if the 0 and 1 are reversed?

Problems for Lecture 22 (from textbook Section VI.4)

1 For a 1 by 1 matrix in Example 3, the determinant is just $\operatorname{det} X=x_{11}$. Find the first and second derivatives of $F(X)=-\log (\operatorname{det} X)=-\log x_{11}$ for $x_{11}>0$. Sketch the graph of $F=-\log x$ to see that this function F is convex.
$6 \quad$ What is the gradient descent equation $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-s_{k} \nabla f\left(\boldsymbol{x}_{k}\right)$ for the least squares problem of minimizing $f(\boldsymbol{x})=\frac{1}{2}\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}$?

Problem for Lecture 23 (from textbook Section VI.4)

5 Explain why projection onto a convex set K is a contraction in equation (24). Why is the distance $\|\boldsymbol{x}-\boldsymbol{y}\|$ never increased when \boldsymbol{x} and \boldsymbol{y} are projected onto K ?

Problem for Lecture 24 (from textbook Section VI.2)

1 Minimize $F(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}=\frac{1}{2} x_{1}^{2}+2 x_{2}^{2}$ subject to $A^{\mathrm{T}} \boldsymbol{x}=x_{1}+3 x_{2}=b$.
(a) What is the Lagrangian $L(\boldsymbol{x}, \lambda)$ for this problem?
(b) What are the three equations "derivative of $L=$ zero"?
(c) Solve those equations to find $\boldsymbol{x}^{*}=\left(x_{1}^{*}, x_{2}^{*}\right)$ and the multiplier λ^{*}.
(d) Draw Figure VI. 4 for this problem with constraint line tangent to cost circle.
(e) Verify that the derivative of the minimum cost is $\partial F^{*} / \partial b=-\lambda^{*}$.

Problems for Lecture 24 (from textbook Section VI.3)

2 Suppose the constraints are $x_{1}+x_{2}+2 x_{3}=4$ and $x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0$. Find the three corners of this triangle in \mathbf{R}^{3}. Which corner minimizes the cost $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}=5 x_{1}+3 x_{2}+8 x_{3}$?

5 Find the optimal (minimizing) strategy for X to choose rows. Find the optimal (maximizing) strategy for Y to choose columns. What is the payoff from X to Y at this optimal minimax point $\boldsymbol{x}^{*}, \boldsymbol{y}^{*}$?
$\underset{\text { matrices }}{\text { Payoff }}\left[\begin{array}{ll}1 & 2 \\ 4 & 8\end{array}\right] \quad\left[\begin{array}{ll}1 & 4 \\ 8 & 2\end{array}\right]$

Problem for Lecture 25 (from textbook Section VI.5)

1 Suppose we want to minimize $F(x, y)=y^{2}+(y-x)^{2}$. The actual minimum is $F=0$ at $\left(x^{*}, y^{*}\right)=(0,0)$. Find the gradient vector $\boldsymbol{\nabla} \boldsymbol{F}$ at the starting point $\left(x_{0}, y_{0}\right)=(1,1)$. For full gradient descent (not stochastic) with step $s=\frac{1}{2}$, where is $\left(x_{1}, y_{1}\right)$?

Problems for Lecture 26 (from textbook Section VII.1)

4 Explain with words or show with graphs why each of these statements about Continuous Piecewise Linear functions (CPL functions) is true :
M The maximum $M(x, y)$ of two CPL functions $F_{1}(x, y)$ and $F_{2}(x, y)$ is CPL.
S The sum $S(x, y)$ of two CPL functions $F_{1}(x, y)$ and $F_{2}(x, y)$ is CPL.
C If the one-variable functions $y=F_{1}(x)$ and $z=F_{2}(y)$ are CPL, so is the composition $C(x)=z=\left(F_{2}\left(F_{1}(x)\right)\right.$.

Problem 7 uses the blue ball, orange ring example on playground.tensorflow.org with one hidden layer and activation by ReLU (not Tanh). When learning succeeds, a white polygon separates blue from orange in the figure that follows.

7 Does learning succeed for $N=4$? What is the count $r(N, 2)$ of flat pieces in $F(\boldsymbol{x})$? The white polygon shows where flat pieces in the graph of $F(\boldsymbol{x})$ change sign as they go through the base plane $z=0$. How many sides in the polygon?

Problems for Lecture 27 (from textbook Section VII.2)

2 If A is an m by n matrix with $m>n$, is it faster to multiply $A\left(A^{\mathrm{T}} A\right)$ or $\left(A A^{\mathrm{T}}\right) A$?
5 Draw a computational graph to compute the function $f(x, y)=x^{3}(x-y)$. Use the graph to compute $f(2,3)$.

Problem for Lecture 30 (from textbook Section IV.8)

3 For a connected graph with M edges and N nodes, what requirement on M and N comes from each of the words spanning tree ?

Problem for Lecture 30 (from textbook Section IV.2)

$1 \quad$ Find $\boldsymbol{c} * \boldsymbol{d}$ and $\boldsymbol{c} * \boldsymbol{d}$ for $\boldsymbol{c}=(2,1,3)$ and $\boldsymbol{d}=(3,1,2)$.

Problems for Lecture 31 (from textbook Section IV.2)

3 If $\boldsymbol{c} * \boldsymbol{d}=\boldsymbol{e}$, why is $\left(\sum c_{i}\right)\left(\sum d_{i}\right)=\left(\sum e_{i}\right)$? Why was our check successful? $(1+2+3)(5+0+4)=(\mathbf{6})(\mathbf{9})=\mathbf{5 4}=5+10+19+8+12$.
5 What are the eigenvalues of the 4 by 4 circulant $C=I+P+P^{2}+P^{3}$? Connect those eigenvalues to the discrete transform $F \boldsymbol{c}$ for $\boldsymbol{c}=(1,1,1,1)$. For which three real or complex numbers z is $1+z+z^{2}+z^{3}=0$?

Problem for Lecture 32 (from textbook Section IV.2)

4 Any two circulant matrices of the same size commute: $C D=D C$. They have the same eigenvectors \boldsymbol{q}_{k} (the columns of the Fourier matrix F). Show that the eigenvalues $\lambda_{k}(C D)$ are equal to $\lambda_{k}(C)$ times $\lambda_{k}(D)$.

Problem for Lecture 33 (from textbook Section VII.1)

5 How many weights and biases are in a network with $m=N_{0}=4$ inputs in each feature vector \boldsymbol{v}_{0} and $N=6$ neurons on each of the 3 hidden layers? How many activation functions (ReLU) are in this network, before the final output?

Problem for Lecture 33 (from textbook Section IV.10)

$2 \quad\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|^{2}=9$ and $\left\|\boldsymbol{x}_{2}-\boldsymbol{x}_{3}\right\|^{2}=16$ and $\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{3}\right\|^{2}=25$ do satisfy the triangle inequality $3+4>5$. Construct G and find points $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}$ that match these distances.

Problem for Lecture 34 (from textbook Sections IV. 9 and IV.10)

1 Which orthogonal matrix Q minimizes $\|X-Y Q\|_{F}^{2}$? Use the solution $Q=U V^{\mathrm{T}}$ above and also minimize as a function of θ (set the θ-derivative to zero) :

$$
X=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \quad Y=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad Q=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Problem for Lecture 35 (from textbook Sections IV.6-IV.7)

1 What are the Laplacian matrices for a triangle graph and a square graph?

MIT OpenCourseWare
https://ocw.mit.edu
18.065 Matrix Methods in Data Analysis, Signal Processing, and Machine Learning Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

