ZOOMNOTES FOR LINEAR ALGEBRA

GILBERT STRANG
Massachusetts Institute of Technology

ZoomNotes for Linear Algebra
Copyright ©2021 by Gilbert Strang
ISBN 978-1-7331466-4-7
\section*{LETEX typesetting by Ashley C. Fernandes}

Texts from Wellesley - Cambridge Press

Linear Algebra for Everyone, 2020, Gilbert Strang	ISBN 978-1-7331466-3-0
Linear Algebra and Learning from Data, 2019, Gilbert Strang	ISBN 978-0-6921963-8-0
Introduction to Linear Algebra, 5th Ed., 2016, Gilbert Strang	ISBN 978-0-9802327-7-6
Computational Science and Engineering, Gilbert Strang	ISBN 978-0-9614088-1-7
Differential Equations and Linear Algebra, Gilbert Strang	ISBN 978-0-9802327-9-0
Wavelets and Filter Banks, Gilbert Strang and Truong Nguyen	ISBN 978-0-9614088-7-9
Introduction to Applied Mathematics, Gilbert Strang	ISBN 978-0-9614088-0-0
Calculus Third Edition, Gilbert Strang	ISBN 978-0-9802327-5-2
Algorithms for Global Positioning, Kai Borre \& Gilbert Strang	ISBN 978-0-9802327-3-8
Essays in Linear Algebra, Gilbert Strang	ISBN 978-0-9802327-6-9

An Analysis of the Finite Element Method, 2008 edition, Gilbert Strang and George Fix ISBN 978-0-9802327-0-7

Wellesley - Cambridge Press	Gilbert Strang's page : $\underline{\text { math.mit.edu/ } \sim \mathbf{g s}}$
Box 812060 , Wellesley MA 02482 USA	For orders : $\underline{\text { math.mit.edu/weborder.php }}$
www.wellesleycambridge.com	Outside US/Canada: www.cambridge.org
	Select books, India: www.wellesleypublishers.com

The textbook websites are math.mit.edu/linearalgebra and math.mit.edu/everyone.
Those sites link to 18.06 course materials and video lectures on YouTube and OCW. Solution Manuals can be printed from those sites and math.mit.edu/learningfromdata.

Linear Algebra is included in MIT's OpenCourseWare site ocw.mit.edu/courses.
This provides video lectures of the full linear algebra courses 18.06 and 18.06 SC and 18.065.

ZoomNotes for Linear Algebra : Gilbert Strang

Preface 1
Textbooks, ZoomNotes, and Video Lectures 2
Three Great Factorizations : $L U$ and $Q R$ and SVD 3
Part 1 : Basic Ideas of Linear Algebra 5
Part 2: Solving Linear Equations $A x=b: A$ is n by n 14
Part 3 : Vector Spaces and Subspaces, Basis and Dimension 21
Part 4 : Orthogonal Matrices and Least Squares 30
Part 5 : Determinant of a Square Matrix 35
Part 6: Eigenvalues and Eigenvectors : $\boldsymbol{A x}=\lambda \boldsymbol{x}$ and $\boldsymbol{A}^{n} \boldsymbol{x}=\lambda^{n} \boldsymbol{x}$ 40
Part 7 : Singular Values and Vectors : $A v=\sigma u$ and $A=U \Sigma V^{T}$ 46
Part 8 : Linear Transformations and Their Matrices 54
Part 9: Complex Numbers and the Fourier Matrix 59
Part 10 : Learning from Data : Minimize Loss by Gradient Descent 65
Part 11 : Basic Statistics : Mean, Variance, Covariance 72

Preface

The title "ZoomNotes" indicates that these pages were created in 2020 and 2021. But they are not limited to online lectures. I hope these notes will help instructors and students to see linear algebra in an organized way, from vectors to matrices to subspaces to bases. "Linear independence" is a crucial idea for this subject, so it comes early-for vectors of integers.

I hope that faculty who are planning a linear algebra course and students who are reading for themselves will see these notes.

A happy part of linear algebra is the wonderful variety of matrices-diagonal, triangular, symmetric, orthogonal, and many more. The organizing principles have become matrix factorizations like $A=L U$ (lower triangular times upper triangular). The idea of elimination-to simplify the equations $A \boldsymbol{x}=\boldsymbol{b}$ by introducing zeros in the matrix-appears early as it must. Please don't spend forever on those computations. Linear algebra has so many more good ideas.
The reader may know my video lectures on OpenCourseWare : Math 18.06 is on ocw.mit.edu and
on Youtube/mitocw. I am so grateful that those have been helpful. Now I have realized that lecture notes can help in a different way. You will quickly gain a picture of the whole coursethe structure of the subject, the key topics in a natural order, the connecting ideas that make linear algebra so beautiful. This structure is the basis of two textbooks from Wellesley-Cambridge Press :

Introduction to Linear Algebra Linear Algebra for Everyone

I don't try to teach every topic in those books. I do try to reach eigenvalues and singular values ! A basis of eigenvectors for square matrices-and of singular vectors for all matrices-takes you to the heart of a matrix in a way that elimination cannot do.

The last chapters of these notes extend to a third book and a second math course 18.065 with videos on OpenCourseWare :

Linear Algebra and Learning from Data (Wellesley-Cambridge Press 2019)

This is "Deep Learning" and it is not entirely linear. It creates a learning function $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{v})$ from training data \boldsymbol{v} (like images of handwritten numbers) and matrix weights \boldsymbol{x}. The piecewise linear "ReLU function" plays a mysterious but crucial part in \boldsymbol{F}. Then $\boldsymbol{F}\left(\boldsymbol{x}, \boldsymbol{v}_{\text {new }}\right)$ can come close to new data that the system has never seen.

The learning function $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{v})$ grows out of linear algebra and optimization and statistics and high performance computing. Our aim is to understand (in part) why it succeeds.

Above all, I hope these ZoomNotes help you to teach linear algebra and learn linear algebra. This subject is used in so many valuable ways. And it rests on ideas that everyone can understand.

Thank you.
Gilbert Strang

Textbooks, ZoomNotes, and Video Lectures

Introduction to Linear Algebra, 5th Ed. (2016)
Linear Algebra and Learning from Data (2019)
Linear Algebra for Everyone (2020)
math.mit.edu/linearalgebra
math.mit.edu/learningfromdatamath.mit.edu/everyone
Differential Equations and Linear Algebra (2014) math.mit.edu/dela
ZoomNotes for Linear Algebra (2021)
Video Lectures OpenCourseWare ocw.mit.edu/courses youtube/mitocw
Math 18.06 and 18.06SC Linear Algebra at MIT
(added to 18.06) A 2020 Vision of Linear Algebra
Math 18.065 Linear Algebra and Learning from Data
Math 18.085 and 18.086 Computational Science and Engineering
Strang and Moler Differential Equations and Linear AlgebraInterview with Lex Fridman https://www.youtube.com/watch?v=lEZPfmGCEk0Wellesley - Cambridge PressBox 812060, Wellesley MA 02482 USAwww.wellesleycambridge.comOrders: math.mit.edu/weborder.php

Gilbert Strang's page : math.mit.edu/~gs
Outside US/Canada : www.cambridge.org Select books, India : www.wellesleypublishers.com

Three Great Factorizations : $L \boldsymbol{U}, \boldsymbol{Q R}$, SVD

Orthogonal matrix $Q^{\mathrm{T}} Q=I$
Square $Q Q^{T}=I$

$$
\boldsymbol{Q}=\left[\begin{array}{llll}
& & & \\
\boldsymbol{q}_{1} & \boldsymbol{q}_{2} & \cdots & \boldsymbol{q}_{n}
\end{array}\right]
$$

Orthogonal basis

Triangular matrix
$R_{i j}=0$ for $i>j$
$\boldsymbol{R}_{j j} \neq 0$ on diagonal

$$
\boldsymbol{R}=\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdot & r_{1 n} \\
& r_{22} & \cdot & r_{2 n} \\
& & \cdot & \cdot \\
& & & r_{n n}
\end{array}\right]
$$

Triangular basis

1. $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}=$ (lower triangular) (upper triangular) : Elimination
2. $A=Q R=$ (orthogonal) (upper triangular): Gram-Schmidt
3. $A=U \Sigma V^{\mathbf{T}}=($ orthogonal $)($ diagonal $)($ orthogonal $)$: Singular values Chapters 2, 4, 7

Part 1

Basic Ideas of Linear Algebra

1.1 Linear Combinations of Vectors

1.2 Dot Products $v \cdot w$ and Lengths $\|v\|$ and Angles θ
1.3 Matrices Multiplying Vectors
1.4 Column Space and Row Space of \boldsymbol{A}
1.5 Dependent and Independent Columns
1.6 Matrix-Matrix Multiplication $A B$
1.7 Factoring A into $C R$: Column rank $=r=$ Row rank
1.8 Rank one matrices $A=(1$ column) times (1 row)

Part 1 : Basic Ideas of Linear Algebra

1.1 Linear Combinations of Vectors

A 3-dimensional vector $\boldsymbol{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ has 3 components v_{1}, v_{2}, v_{3} as in $\boldsymbol{v}=\left[\begin{array}{l}2 \\ 4 \\ 1\end{array}\right]$
\boldsymbol{v} gives a point in 3-dimensional space \mathbf{R}^{3}. Think of an arrow from $(0,0,0)$ to $(2,4,1)$.
We add vectors $\boldsymbol{v}+\boldsymbol{w}$. We multiply them by numbers like $c=4$ and $d=\mathbf{0}$ (called scalars)
$\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]+\left[\begin{array}{r}2 \\ 0 \\ -2\end{array}\right]=\left[\begin{array}{l}\mathbf{5} \\ \mathbf{4} \\ \mathbf{3}\end{array}\right] \quad \mathbf{4}\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]=\left[\begin{array}{l}\mathbf{1 2} \\ \mathbf{1 6} \\ \mathbf{2 0}\end{array}\right] \quad \mathbf{0}\left[\begin{array}{r}2 \\ 0 \\ -2\end{array}\right]=\left[\begin{array}{l}\mathbf{0} \\ \mathbf{0} \\ \mathbf{0}\end{array}\right]=$ zero vector
Linear combinations $2 \boldsymbol{v}-3 \boldsymbol{w}$ and $c \boldsymbol{v}+d \boldsymbol{w}$ and $\boldsymbol{w}-2 \boldsymbol{z}+\boldsymbol{u}$
$\mathbf{2}\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]-\mathbf{3}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{l}\mathbf{3} \\ \mathbf{2} \\ \mathbf{1}\end{array}\right] \quad \mathbf{1}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]-\mathbf{2}\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]+\mathbf{1}\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]=\left[\begin{array}{l}\mathbf{0} \\ \mathbf{0} \\ \mathbf{0}\end{array}\right]$
Allow every $\boldsymbol{c}, \boldsymbol{d}$ or all $\boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}$ All combinations of \boldsymbol{v} and \boldsymbol{w} usually (!) fill a plane in \mathbf{R}^{3}
All $c\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]+d\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ fill a plane \quad All $c\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+d\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]+e\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ fill 3D space \mathbf{R}^{3}
Sometimes a combination gives the zero vector. Then the vectors are dependent.
All $c\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]+d\left[\begin{array}{r}6 \\ 8 \\ 10\end{array}\right]$ only fill a line. They are all multiples of $\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$. This includes $\left[\begin{array}{l}-\mathbf{3} \\ -4 \\ -5\end{array}\right]$
All $c\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+d\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]+e\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right] \quad \begin{aligned} & \text { only fill a plane and not 3D space. } \\ & \text { That third vector is nothing new. }\end{aligned}\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$ is $2\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]-\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.

1.2 Dot Products $\boldsymbol{v} \cdot \boldsymbol{w}$ and Lengths $\|\boldsymbol{v}\|$ and Angles $\boldsymbol{\theta}$

Dot product $\boldsymbol{v} \cdot \boldsymbol{w}=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right] \cdot\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]=\begin{aligned} & 3 \times 2 \\ & 4 \times 0 \\ & \frac{5 \times 1}{\mathbf{a d d}}\end{aligned}=\mathbf{1 1}$

$$
\begin{aligned}
& \boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{w} \cdot \boldsymbol{v} \\
& {\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left[\begin{array}{l}
c \\
d
\end{array}\right]=\boldsymbol{a c}+\boldsymbol{b} \boldsymbol{d}}
\end{aligned}
$$

Length squared of $\boldsymbol{v}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ is $\|\boldsymbol{v}\|^{2}=3^{2}+4^{2}=\mathbf{9}+\mathbf{1 6}$. This is Pythagoras $c^{2}=a^{2}+b^{2}$
Length squared of \boldsymbol{v} is $\|\boldsymbol{v}\|^{2}=\boldsymbol{v} \cdot \boldsymbol{v}=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right] \cdot\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]=9+16+25$ (Pythagoras in 3D)
Length squared of $\boldsymbol{v}+\boldsymbol{w}$ is $(\boldsymbol{v}+\boldsymbol{w}) \cdot(\boldsymbol{v}+\boldsymbol{w})=\boldsymbol{v} \cdot \boldsymbol{v}+\boldsymbol{v} \cdot \boldsymbol{w}+\boldsymbol{w} \cdot \boldsymbol{v}+\boldsymbol{w} \cdot \boldsymbol{w}$

$$
\|\boldsymbol{v}+\boldsymbol{w}\|^{2}=\|\boldsymbol{v}\|^{2}+\|\boldsymbol{w}\|^{2}+2 \boldsymbol{v} \cdot \boldsymbol{w} \quad\| \| \boldsymbol{v}+\boldsymbol{w}\|\leq\| \boldsymbol{v}\|+\| \boldsymbol{w} \|
$$

$\boldsymbol{v}=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right] \quad \boldsymbol{w}=\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right] \quad \boldsymbol{v}+\boldsymbol{w}=\left[\begin{array}{l}4 \\ 4 \\ 4\end{array}\right] \quad \begin{aligned} & \text { Length squared } \\ & \text { of } \boldsymbol{v}+\boldsymbol{w} \text { is } \\ & 4^{2}+4^{2}+4^{2}\end{aligned} 48$ is $\mathbf{5 0 + 2 + 2 \boldsymbol { v } \cdot \boldsymbol { w }}$
Triangle has
edges $\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{v}-\boldsymbol{w}$

$$
\|\boldsymbol{v}-\boldsymbol{w}\|^{2}=\|\boldsymbol{v}\|^{2}+\|\boldsymbol{w}\|^{2}-2 \boldsymbol{v} \cdot \boldsymbol{w}
$$

The dot product $v \cdot w$ reveals the angle θ between v and w $|\cos \theta| \leq 1$ is one way to see the Schwarz inequality

$$
\begin{array}{|l|l|}
\hline \boldsymbol{v} \cdot \boldsymbol{w}=\|\boldsymbol{v}\|\|\boldsymbol{w}\| \cos \theta \\
|\boldsymbol{v} \cdot \boldsymbol{w}| \leq\|\boldsymbol{v}\|\|\boldsymbol{w}\| \\
\hline
\end{array}
$$

The angle between $\boldsymbol{v}=\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right]$ and $\boldsymbol{w}=\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right] \quad \begin{gathered}\text { is } \boldsymbol{\theta}=\mathbf{9 0}^{\circ} \\ \text { because }\end{gathered} \quad \boldsymbol{v} \cdot \boldsymbol{w}=\mathbf{0}:$ Perpendicular
The angle between $\boldsymbol{v}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\boldsymbol{w}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is $\boldsymbol{\theta}=\mathbf{4 5 ^ { \circ }}$ because $\boldsymbol{v} \cdot \boldsymbol{w}=1$ and $\|\boldsymbol{v}\|\|\boldsymbol{w}\|=\sqrt{2}$.

1.3 Matrices Multiplying Vectors

There is a row way to multiply $A \boldsymbol{x}$ and also a column way to compute the vector $A \boldsymbol{x}$
Row way $=$ Dot product of vector \boldsymbol{x} with each row of A
$A \boldsymbol{x}=\left[\begin{array}{ll}2 & 5 \\ 3 & 7\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}2 v_{1}+5 v_{2} \\ 3 v_{1}+7 v_{2}\end{array}\right] \quad\left[\begin{array}{ll}2 & 5 \\ 3 & 7\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{r}7 \\ 10\end{array}\right]$
Column way $=A \boldsymbol{x}$ is a combination of the columns of \boldsymbol{A}
$A \boldsymbol{x}=\left[\begin{array}{ll}2 & 5 \\ 3 & 7\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=v_{1}\left[\begin{array}{c}\text { column } \\ 1\end{array}\right]+v_{2}\left[\begin{array}{c}\text { column } \\ 2\end{array}\right]\left[\begin{array}{ll}2 & 5 \\ 3 & 7\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 3\end{array}\right]+\left[\begin{array}{l}5 \\ 7\end{array}\right]=\left[\begin{array}{r}\mathbf{7} \\ \mathbf{1 0}\end{array}\right]$
Which way to choose? Dot products with rows or combination of columns?
For computing with numbers, I use the row way: dot products
For understanding with vectors, I use the column way: combine columns
Same result $A \boldsymbol{x}$ from the same multiply-adds. Just in a different order

$$
\mathbf{C}(A)=\text { Column space of } \boldsymbol{A}=\text { all combinations of the columns }=\text { all outputs } \boldsymbol{A x}
$$

The identity matrix has $I \boldsymbol{x}=\boldsymbol{x}$ for every $\boldsymbol{x} \quad\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$
The column space of the 3 by 3 identity matrix I is the whole space \mathbf{R}^{3}.
If all columns are multiples of column 1 (not zero), the column space $\mathbf{C}(A)$ is a line.

Line containing all $c u$

Plane from all $c \boldsymbol{u}+d \boldsymbol{v}$

1.4 Column Space and Row Space of A

The column space of \boldsymbol{A} contains all linear combinations of the columns of \boldsymbol{A} All the vectors $A \boldsymbol{x}$ (for all \boldsymbol{x}) fill the column space $\mathbf{C}(A)$: line or plane or ...

If \boldsymbol{v} is in $\mathbf{C}(A)$ so is every $c \boldsymbol{v}$. [Reason: $\boldsymbol{v}=A \boldsymbol{x}$ gives $c \boldsymbol{v}=A(c \boldsymbol{x})$]
If \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are in $\mathbf{C}(A)$ so is $\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\left[\boldsymbol{v}_{1}=A \boldsymbol{x}_{1}\right.$ and $\boldsymbol{v}_{2}=A \boldsymbol{x}_{2}$ give $\boldsymbol{v}_{1}+\boldsymbol{v}_{2}=$ $\left.A\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right)\right]$

The column spaces of $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$ and $\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$ are the whole \mathbf{R}^{2}
The column spaces of $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$ are lines inside 2-dimensional space
The column space of $Z=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ has $\mathbf{C}(Z)=$ only one point $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.

The row space of A contains all combinations of the rows of A
To stay with column vectors, transpose \boldsymbol{A} to make its rows into columns of $\boldsymbol{A}^{\mathrm{T}}$
Then the row space of A is the column space of A^{T} (A transpose)

The column space of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 6 & 9\end{array}\right]$ is an infinite line in the direction of $\left[\begin{array}{l}1 \\ 3\end{array}\right]$
The row and column spaces of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 4 \\ 1 & 4 & 5\end{array}\right]$ are infinite planes. Not all of \mathbf{R}^{3}
The row and column spaces of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right]$ are the whole \mathbf{R}^{3}.
$A=\left[\begin{array}{llll}1 & 2 & 5 & 1 \\ 3 & 4 & 6 & 7\end{array}\right] \quad \begin{aligned} & \text { has column space }=\mathbf{R}^{2} \\ & \text { has row space }=2 \mathrm{D} \text { plane in } \mathbf{R}^{4}\end{aligned}$

1.5 Dependent and Independent Columns

The columns of A are "dependent" if one column is a combination of the other columns
Another way to describe dependence : $\boldsymbol{A x}=\mathbf{0}$ for some vector \boldsymbol{x} (other than $\boldsymbol{x}=\mathbf{0}$)
$A_{1}=\left[\begin{array}{ll}1 & 2 \\ 2 & 4 \\ 1 & 2\end{array}\right]$ and $A_{2}=\left[\begin{array}{lll}1 & 4 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 0\end{array}\right]$ and $A_{3}=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]$ have dependent columns
Reasons : Column 2 of $A_{1}=2\left(\right.$ Column 1) $\quad A_{2}$ times $\boldsymbol{x}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ gives $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
A_{3} has 3 columns in 2-dimensional space. Three vectors in a plane : Dependent !

The columns of A are "independent" if no column is a combination of the other columns
Another way to say it : $A \boldsymbol{x}=\mathbf{0}$ only when $\boldsymbol{x}=\mathbf{0}$
$A_{4}=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 9\end{array}\right]$ and $A_{5}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ and $A_{6}=I$ have independent columns

What about the rows of A_{1} to $A_{6} ? A_{1}, A_{2}, A_{4}$ have dependent rows. Possibly also A_{3}.
For any square matrix : Columns are independent if and only if rows are independent.

| A key idea |
| :---: | :--- |
| is coming | \(\begin{aligned} \& Number of independent rows=

\& Number of independent columns\end{aligned}\)

1.6 Matrix-Matrix Multiplication $A B$

There are 4 ways to multiply matrices. The first way is usually best for hand computation. The other three ways produce whole vectors instead of just one number at a time.

1. (Row \boldsymbol{i} of $\boldsymbol{A}) \cdot($ Column \boldsymbol{j} of $\boldsymbol{B})$ produces one number: row i, column j of $A B$

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
5 & 7 \\
6 & 8
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1 7} & \cdot \\
\cdot & \cdot
\end{array}\right] \text { because }\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
5 \\
6
\end{array}\right]=\mathbf{1 7} \quad \text { Dot product }
$$

2. (Matrix $\boldsymbol{A})($ Column \boldsymbol{j} of $\boldsymbol{B})$ produces column j of $A B$: Combine columns of \boldsymbol{A}

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
\mathbf{5} & 7 \\
\mathbf{6} & 8
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{1 7} & \cdot \\
\mathbf{3 9} & \cdot
\end{array}\right] \text { because } \mathbf{5}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+\mathbf{6}\left[\begin{array}{l}
2 \\
4
\end{array}\right]=\left[\begin{array}{l}
\mathbf{1 7} \\
\mathbf{3 9}
\end{array}\right]
$$

This is the best way for understanding : Linear combinations. "Good level"
3. (Row \boldsymbol{i} of \boldsymbol{A})(Matrix \boldsymbol{B}) produces row i of $A B$: Combine rows of \boldsymbol{B}

$$
\left[\begin{array}{ll}
\mathbf{1} & \mathbf{2} \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
5 & 7 \\
6 & 8
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1 7} & \mathbf{2 3} \\
\cdot & \cdot
\end{array}\right] \text { because } \mathbf{1}\left[\begin{array}{ll}
5 & 7
\end{array}\right]+\mathbf{2}\left[\begin{array}{ll}
6 & 8
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{1 7} & \mathbf{2 3}
\end{array}\right]
$$

4. (Column \boldsymbol{k} of $\boldsymbol{A})($ Row \boldsymbol{k} of $\boldsymbol{B})$ produces a simple matrix : Add these simple matrices!

$$
\left[\begin{array}{l}
1 \\
3
\end{array}\right]\left[\begin{array}{cc}
5 & 7
\end{array}\right]=\left[\begin{array}{cc}
5 & 7 \\
15 & 21
\end{array}\right] \text { and }\left[\begin{array}{l}
2 \\
4
\end{array}\right]\left[\begin{array}{ll}
6 & 8
\end{array}\right]=\left[\begin{array}{cc}
12 & 16 \\
24 & 32
\end{array}\right] \quad \begin{gathered}
\text { NOW } \\
\text { ADD }
\end{gathered}\left[\begin{array}{cc}
\mathbf{1 7} & \mathbf{2 3} \\
\mathbf{3 9} & \mathbf{5 3}
\end{array}\right]=\boldsymbol{A} \boldsymbol{B}
$$

Dot products in $\mathbf{1}$ are "inner products". Column-row products in $\mathbf{4}$ are "outer products".
All four ways use the same $\boldsymbol{m} \boldsymbol{n} \boldsymbol{p}$ multiplications if A is \boldsymbol{m} by \boldsymbol{n} and B is \boldsymbol{n} by \boldsymbol{p}.
If A and B are square n by n matrices then $A B$ uses $\boldsymbol{n}^{\mathbf{3}}$ multiply-adds in $\mathbf{1 , 2 , 3}, 4$.
Associative Law $\quad A$ times $B C=A B$ times $\boldsymbol{C} \quad$ Most important rule!

Block multiplication

Block sizes must fit

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
E \\
F
\end{array}\right]=\left[\begin{array}{c}
A E+B F \\
C E+D F
\end{array}\right]
$$

1.7 Factoring A into $C R$: Column rank $=r=$ Row rank

Step $1 \boldsymbol{C}$ contains the first \boldsymbol{r} independent columns of \boldsymbol{A} (delete dependent columns of A)

1. If column 1 of A is not zero, put it into C
2. If column 2 of A is not a multiple of column 1 of A, put it into C
3. If column 3 of A is not a combination of columns 1 and 2 of A, put it into C
n. If column n of A is not a combination of the first $n-1$ columns, put it into C
Step 2 Column j of $C R$ expresses column j of A as a combination of the columns of C

Example $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 1 & 3 & 5\end{array}\right] \quad \begin{aligned} & \text { Columns } 1 \text { and } 2 \text { of } A \text { go directly into } C \\ & \text { Column } 3=\mathbf{2}(\text { Column } 1)+\mathbf{1}(\text { Column } 2)\end{aligned} \quad$ Not in C
$A=\left[\begin{array}{lll}1 & 2 & 4 \\ 1 & 3 & 5\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]\left[\begin{array}{ccc}1 & 0 & \downarrow \\ 0 & 1 & \mathbf{1}\end{array}\right]=C R \quad \begin{gathered}2 \text { columns in } C \\ 2 \text { rows in } R\end{gathered}$
These matrices A, C, R all have column rank 2 (2 independent columns)
By the theorem A, C, R also have row rank 2 (2 independent rows)

First great theorem \quad Every matrix has column rank = row rank

Dimension r of the column space $=$ Dimension r of the row space $=$ Rank of matrix A

$$
A=(m \text { by } n)=C R=(m \text { by } r)(r \text { by } n)
$$

1.8 Rank one matrices $A=$ (1 column) times (1 row)

$\underset{\text { Example }}{\underset{\text { Eank one }}{ }} \quad A=\left[\begin{array}{lll}2 & 4 & 6 \\ 3 & 6 & 9\end{array}\right]=\left[\begin{array}{l}2 \\ 3\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]=C R$
Suppose all columns of A are multiples of one column. Then all rows of \boldsymbol{A} are multiples of one row. Rank $=1$.

Row space is a line Column space is a line
If all columns of A are multiples of column 1 , it goes into C.
If all rows of A are multiples of row 1 , that row (divided by a_{11}) goes into R.
Every rank 1 matrix factors into one column times one row.
Every rank r matrix is the sum of r rank one matrices.
This comes from column times row multiplication of C times R.

* If A starts with a row or column of zeros, look at row 2 or column 2
** Rank 1 matrices are the building blocks of all matrices
$A=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 3 & 4 \\ 2 & 6 & 8\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\left[\begin{array}{lll}1 & 3 & 4\end{array}\right]$
All the key factorizations of linear algebra add columns times rows

$$
A=C R \quad A=L U \quad A=Q R \quad S=Q \Lambda Q^{\mathrm{T}} \quad A=U \Sigma V^{\mathrm{T}}
$$

Those 5 factorizations are described in Parts $1+3,2,4,6,7$ of these ZoomNotes

Part 2

Solving Linear Equations $A x=b: A$ is n by n

2.1 Inverse Matrices A^{-1} and Solutions $x=A^{-1} b$2.2 Triangular Matrix and Back Substitution for $U \boldsymbol{x}=\boldsymbol{c}$2.3 Elimination : Square Matrix \boldsymbol{A} to Triangular \boldsymbol{U}
2.4 Row Exchanges for Nonzero Pivots : Permutation P
2.5 Elimination with No Row Exchanges : Why is $A=L U$?
2.6 Transposes / Symmetric Matrices / Dot Products

Part 2 :

Solving Linear Equations $A x=b: A$ is n by n

2.1 Inverse Matrices \boldsymbol{A}^{-1} and Solutions $x=A^{-1} b$

The inverse of a square matrix A has $\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{I}$ and $\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{I}$

2 by $2 \quad A^{-1}=\left[\begin{array}{ll}2 & 1 \\ 5 & 4\end{array}\right]^{-1}=\frac{1}{3}\left[\begin{array}{rr}4 & -1 \\ -3 & 2\end{array}\right] \quad\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$
A has no inverse if $\boldsymbol{a d}-\boldsymbol{b} \boldsymbol{c}=0 \quad A=\left[\begin{array}{ll}\mathbf{1} & 2 \\ 4 & 8\end{array}\right] \begin{aligned} & \text { has no inverse matrix } \\ & \text { has dependent rows } \\ & \text { has dependent columns }\end{aligned}$

1. Invertible \Leftrightarrow Rows are independent \Leftrightarrow Columns are independent
2. No zeros on the main diagonal \Leftrightarrow Triangular matrix is invertible
3. If $B A=I$ and $A C=I$ then $\boldsymbol{B}=B(A C)=(B A) C=\boldsymbol{C}$
4. Invertible \Leftrightarrow The only solution to $\boldsymbol{A x}=\boldsymbol{b}$ is $\boldsymbol{x}=A^{-1} b$
5. Invertible \Leftrightarrow determinant is not zero $\Leftrightarrow \boldsymbol{A}^{-\mathbf{1}}=[\text { cofactor matrix }]^{\mathrm{T}} / \operatorname{det} A$
6. Inverse of $\boldsymbol{A} \boldsymbol{B}=\boldsymbol{B}^{\mathbf{- 1}}$ times $\boldsymbol{A}^{\mathbf{- 1}}$ (need both inverses) $A B B^{-1} A^{-1}=I$
7. Computing A^{-1} is not efficient for $A \boldsymbol{x}=\boldsymbol{b}$. Use 2.3: elimination.

2.2 Triangular Matrix and Back Substitution for $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{c}$

Solve $\boldsymbol{U} \boldsymbol{x}=\left[\begin{array}{lll}\mathbf{2} & 3 & 4 \\ 0 & \mathbf{5} & 6 \\ 0 & 0 & \mathbf{7}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}19 \\ 17 \\ 14\end{array}\right]=\boldsymbol{c}$ without finding $\boldsymbol{U}^{-\mathbf{1}}$
Upper triangular U / Pivots 2, 5, 7 are not zero / Go from bottom to top
Back substitution The last equation $7 x_{3}=14$ gives $\boldsymbol{x}_{\mathbf{3}}=\mathbf{2}$
Work upwards The next equation $5 x_{2}+6(2)=17$ gives $\boldsymbol{x}_{\mathbf{2}}=\mathbf{1}$
Upwards again The first equation $2 x_{1}+3(1)+4(2)=19$ gives $\boldsymbol{x}_{\mathbf{1}}=\mathbf{4}$
Conclusion \quad The only solution to this example is $\boldsymbol{x}=(\mathbf{4}, \mathbf{1}, \mathbf{2})$
Special note To solve for x_{3}, x_{2}, x_{1} we divided by the pivots $7,5,2$
A zero pivot in \boldsymbol{U} produces dependent rows, dependent columns, no $\boldsymbol{U}^{-\mathbf{1}}$

$$
\begin{aligned}
& \begin{array}{l}
\text { Inverse of this } \\
\text { difference matrix } \\
=\text { sum matrix }
\end{array}
\end{aligned}\left[\begin{array}{rrrr}
\mathbf{1} & -\mathbf{1} & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -\mathbf{1} \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Calculus: Inverse of derivative is integral $\int_{0}^{x} \frac{d f}{d x} d x=f(x)-f(0)$

2.3 Elimination : Square Matrix \boldsymbol{A} to Triangular \boldsymbol{U}

$\boldsymbol{A}=\left[\begin{array}{rrr}\mathbf{2} & 3 & 4 \\ 4 & 11 & 14 \\ \mathbf{2} & 8 & 17\end{array}\right] \rightarrow\left[\begin{array}{rrr}\mathbf{2} & 3 & 4 \\ \mathbf{0} & \mathbf{5} & 6 \\ 2 & 8 & 17\end{array}\right] \rightarrow\left[\begin{array}{rrr}\mathbf{2} & 3 & 4 \\ \mathbf{0} & \mathbf{5} & 6 \\ \mathbf{0} & 5 & 13\end{array}\right] \rightarrow\left[\begin{array}{lll}\mathbf{2} & 3 & 4 \\ \mathbf{0} & \mathbf{5} & 6 \\ \mathbf{0} & \mathbf{0} & \mathbf{7}\end{array}\right]=\boldsymbol{U}$
One elimination step subtracts $\ell_{i j}$ times row \boldsymbol{j} from row $\boldsymbol{i}(i>j)$
Each step produces a zero below the diagonal of $U: \ell_{21}=2, \ell_{31}=\ell_{32}=1$
$\begin{aligned} & \text { To invert elimination, add } \\ & \ell_{i j} \text { times row } \boldsymbol{j} \text { back to row } \boldsymbol{i}\end{aligned} \quad\left[\begin{array}{rrr}1 & & \\ -\ell & 1 & \\ 0 & 0 & 1\end{array}\right]^{-1}=\left[\begin{array}{lll}1 & & \\ \ell & 1 & \\ 0 & 0 & 1\end{array}\right]$
$\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}=($ Lower triangular $\boldsymbol{L})$ times (Upper triangular $\boldsymbol{U})$
This A needs 3 elimination steps to a beautiful result

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
2 & 3 & 4 \\
4 & 11 & 14 \\
2 & 8 & 17
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
\mathbf{2} & 1 & 0 \\
\mathbf{1} & \mathbf{1} & 1
\end{array}\right]\left[\begin{array}{lll}
\mathbf{2} & \mathbf{3} & \mathbf{4} \\
0 & \mathbf{5} & \mathbf{6} \\
0 & 0 & \mathbf{7}
\end{array}\right]=\boldsymbol{L} \text { times } \boldsymbol{U}
$$

Elimination produced no zeros on the diagonal and created 3 zeros in U
For $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \quad$ Add extra column $\boldsymbol{b} \quad$ Elimination and back substitution

$$
\left[\begin{array}{ll}
\boldsymbol{A} & \boldsymbol{b}
\end{array}\right]=\left[\begin{array}{rrrr}
2 & 3 & 4 & \mathbf{1 9} \\
4 & 11 & 14 & \mathbf{5 5} \\
2 & 8 & 17 & \mathbf{5 0}
\end{array}\right] \rightarrow\left[\begin{array}{ll}
\boldsymbol{U} & \boldsymbol{c}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{2} & 3 & 4 & \mathbf{1 9} \\
0 & \mathbf{5} & 6 & \mathbf{1 7} \\
0 & 0 & \mathbf{7} & \mathbf{1 4}
\end{array}\right] \xrightarrow{\text { in } \mathbf{2 . 2}} \boldsymbol{\operatorname { b a c k s u b }} \boldsymbol{x}=\left[\begin{array}{l}
\mathbf{4} \\
\mathbf{1} \\
\mathbf{2}
\end{array}\right]
$$

2.4 Row Exchanges for Nonzero Pivots: Permutation P

If a diagonal pivot is zero or small: Look below it for a better pivot Exchange rows

$$
A=\left[\begin{array}{ll}
\mathbf{0} & \mathbf{2} \\
\mathbf{3} & \mathbf{4}
\end{array}\right] \text { goes to } P A=\left[\begin{array}{ll}
\mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{0}
\end{array}\right]\left[\begin{array}{ll}
0 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{3} & \mathbf{4} \\
\mathbf{0} & \mathbf{2}
\end{array}\right] \quad \begin{gathered}
\text { Nonzero pivots } \\
3 \text { and } 2
\end{gathered}
$$

Permutation matrix $P=$ Rows of I in any order
There are n ! row orders and n ! permutations of size n (this includes $P=I$)

$$
\begin{aligned}
& \text { The inverse of } P \text { is the transpose of } P \\
& \text { Exchange rows with columns }
\end{aligned}\left[\begin{array}{lll}
0 & \mathbf{1} & 0 \\
0 & 0 & \mathbf{1} \\
\mathbf{1} & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & \mathbf{1} \\
\mathbf{1} & 0 & 0 \\
0 & \mathbf{1} & 0
\end{array}\right]=\boldsymbol{I}
$$

Can you find all six 3 by 3 permutations? Is every $P_{1} P_{2}=P_{2} P_{1}$?
If \boldsymbol{A} is invertible then some $\boldsymbol{P} \boldsymbol{A}$ has no zero pivots and $\boldsymbol{P A = L U}$
Reverse
the order
by \boldsymbol{P}\(\left[\begin{array}{llll}0 \& 0 \& 0 \& \mathbf{1}

0 \& 0 \& \mathbf{1} \& 0

0 \& \mathbf{1} \& 0 \& 0

\mathbf{1} \& 0 \& 0 \& 0\end{array}\right] \quad\)| Circular |
| :--- |
| shift |
| by \boldsymbol{P} |\(\left[\begin{array}{cccc}0 \& 0 \& 0 \& \mathbf{1}

\mathbf{1} \& 0 \& 0 \& 0

0 \& \mathbf{1} \& 0 \& 0

0 \& 0 \& \mathbf{1} \& 0\end{array}\right]\)

2.5 Elimination with No Row Exchanges : Why is $A=L U$?

Reason : Each step removes a column of L times a row of U
Remove $\left[\begin{array}{c}1 \text { (row 1) } \\ \ell_{21} \text { (row 1) } \\ \ell_{31}(\text { row 1) } \\ \ell_{41}(\text { row 1) }\end{array}\right]$ from A to leave $\boldsymbol{A}_{\mathbf{2}}=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & \times & \times & \times\end{array}\right]$
We removed a rank-one matrix : column times row. It was the column $\ell_{1}=$ $\left(1, \ell_{21}, \ell_{31}, \ell_{41}\right)$ times row 1 of A-the first pivot row \boldsymbol{u}_{1}.

We face a similar problem for A_{2}. We take a similar step to A_{3} :

$$
\text { Remove }\left[\begin{array}{c}
0\left(\text { row } 2 \text { of } A_{2}\right) \\
\left.1 \text { (row 2 of } A_{2}\right) \\
\ell_{32}\left(\text { row } 2 \text { of } A_{2}\right) \\
\ell_{42}\left(\text { row } 2 \text { of } A_{2}\right)
\end{array}\right] \text { from } \boldsymbol{A}_{\mathbf{2}} \text { to leave } \boldsymbol{A}_{\mathbf{3}}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \times & \times \\
0 & 0 & \times & \times
\end{array}\right]
$$

Row 2 of A_{2} was the second pivot row $=$ second row \boldsymbol{u}_{2} of U. We removed a column $\ell_{2}=\left(0,1, \ell_{32}, \ell_{42}\right)$ times \boldsymbol{u}_{2}. Continuing this way, every step removes a column ℓ_{j} times a pivot row \boldsymbol{u}_{j} of U. Now put those pieces back:

$$
\boldsymbol{A}=\ell_{1} \boldsymbol{u}_{1}+\ell_{2} \boldsymbol{u}_{2}+\cdots+\ell_{n} \boldsymbol{u}_{n}=\left[\ell_{1} \cdots \ell_{n}\right]\left[\begin{array}{c}
\boldsymbol{u}_{1} \\
\vdots \\
\boldsymbol{u}_{n}
\end{array}\right]=\boldsymbol{L} \boldsymbol{U}
$$

That last step was column-row multiplication (see 1.6) of L times U.
Column k of L and row k of U begin with $k-1$ zeros. Then L is lower triangular and U is upper triangular. Here are the separate elimination matrices-inverted and in reverse order to bring back the original A :

$$
L_{32} L_{31} L_{21} A=U \quad \text { and } \quad A=L_{21}^{-1} L_{31}^{-1} L_{32}^{-1} U=L U
$$

2.6 Transposes / Symmetric Matrices / Dot Products

Transpose of $\boldsymbol{A}=\left[\begin{array}{lll}\mathbf{1} & \mathbf{2} & \mathbf{3} \\ 0 & 0 & 4\end{array}\right]$ is $\boldsymbol{A}^{\mathbf{T}}=\left[\begin{array}{ll}\mathbf{1} & 0 \\ \mathbf{2} & 0 \\ \mathbf{3} & 4\end{array}\right] \quad\left(\boldsymbol{A}^{\mathbf{T}}\right)_{\boldsymbol{i} \boldsymbol{j}}=\boldsymbol{A}_{\boldsymbol{j} \boldsymbol{i}}$

Rules for the	
sum and product	Transpose of $A+B$ is $\boldsymbol{A}^{\mathbf{T}}+\boldsymbol{B}^{\mathbf{T}}$
Transpose of $A B$ is	$\boldsymbol{B}^{\mathbf{T}} \boldsymbol{A}^{\mathbf{T}}$

A symmetric matrix has $S^{\mathrm{T}}=S \quad$ This means that every $s_{i j}=s_{j i}$
The matrices $A^{\mathrm{T}} A$ and $A A^{\mathrm{T}}$ are symmetric / usually different

$$
\left[\begin{array}{ll}
2 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=[13]\left[\begin{array}{l}
2 \\
3
\end{array}\right]\left[\begin{array}{ll}
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
4 & 6 \\
6 & 9
\end{array}\right] \quad \begin{array}{r}
4+9=13 \\
6=6
\end{array}
$$

$S=L U$ is improved to symmetric $\boldsymbol{S}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{\mathbf{T}}$ (pivots in U go into D)
$\boldsymbol{S}=\left[\begin{array}{rr}2 & 4 \\ 4 & 11\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}2 & 4 \\ 0 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]=\boldsymbol{L} \boldsymbol{D} \boldsymbol{U}^{\mathbf{T}}$
Dot product Work $=$ Movements \cdot Forces $=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{f}$
Inner product Heat $=$ Voltage drops \cdot Currents $=\boldsymbol{e}^{\mathrm{T}} \boldsymbol{y}$
$\boldsymbol{x} \cdot \boldsymbol{y}=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{y} \quad$ Income $=$ Quantities \cdot Prices $=\boldsymbol{q}^{\mathrm{T}} \boldsymbol{p}$

Part 3

Vector Spaces and Subspaces Basis and Dimension

3.1 Vector Spaces and Four Fundamental Subspaces

3.2 Basis and Dimension of a Vector Space S
3.3 Column Space and Row Space : Bases by Elimination
3.4 $A x=0$ and $A x=b: x_{\text {nullspace }}$ and $x_{\text {particular }}$
3.5 Four Fundamental Subspaces $\mathbf{C}(A), \mathbf{C}\left(A^{\mathrm{T}}\right), \mathbf{N}(A), \mathbf{N}\left(A^{\mathrm{T}}\right)$
3.6 Graphs, Incidence Matrices, and Kirchhoff's Laws
3.7 Every Matrix \boldsymbol{A} Has a Pseudoinverse \boldsymbol{A}^{+}

Part 3 :
 Vector Spaces and Subspaces Basis and Dimension

3.1 Vector Spaces and Four Fundamental Subspaces

Vector space : Linear combinations of vectors in S must stay in S

$\boldsymbol{S}=\mathbf{R}^{\boldsymbol{n}}$ or Subspace of $\mathbf{R}^{\boldsymbol{n}}, \boldsymbol{S}=$ matrices $\mathbf{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ or functions $\boldsymbol{a x}+\boldsymbol{b}$
Not vector spaces Half-line $x \geq 0$, invertible matrices, singular matrices
Subspaces All of \mathbf{R}^{3}, planes or lines through $(0,0,0)$, one point $(0,0,0)$

Four Subspaces	Column space $\mathbf{C}(A)=$ all vectors $A \boldsymbol{x}$ Row space $\mathbf{C}\left(A^{\mathrm{T}}\right) \quad=$ all vectors $A^{\mathrm{T}} \boldsymbol{y}$
Column space $=$ "range"	Nullspace $\mathbf{N}(A) \quad=$ all \boldsymbol{x} with $A \boldsymbol{x}=\mathbf{0}$
Nullspace $=$ "kernel"	Left nullspace $\mathbf{N}\left(A^{\mathrm{T}}\right)=$ all \boldsymbol{y} with $A^{\mathrm{T}} \boldsymbol{y}=0$

Any set of vectors spans a vector space. It contains all their combinations

3.2 Basis and Dimension of a Vector Space S

Basis $=$ A set of independent vectors that span the space S
Every vector in S is a unique combination of those basis vectors
Dimension of $S=$ The number of vectors in any basis for S

All bases contain the same number of vectors

The column space of $A=\left[\begin{array}{lll}\mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & 0\end{array}\right]$ is the $x-y$ plane in \mathbf{R}^{3}
The first two columns are a basis for $\mathbf{C}(A)$
Another basis for $\mathbf{C}(A)$ consists of the vectors $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right]$
Infinitely many bases Always 2 vectors Dimension of $\mathbf{C}(A)=2$
The nullspace of this A is the z-axis in $\mathbf{R}^{3}: \mathbf{N}(A)=$ all $\left[\begin{array}{l}0 \\ 0 \\ \boldsymbol{z}\end{array}\right]$
Every basis for that nullspace $\mathbf{N}(A)$ contains one vector like $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
The dimension of $\mathbf{N}(A)$ is $\mathbf{1}$. Notice $\mathbf{2}+\mathbf{1}=$ dimension of \mathbf{R}^{3}
Matrix spaces The vector space of 3 by 3 matrices has dimension 9 The subspace of upper triangular matrices has dimension 6

If $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}$ and $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}$	Proof are bases then
$\boldsymbol{W}=\boldsymbol{V} \boldsymbol{A}$	
\begin{array}{lll}\boldsymbol{w}_{1} & \cdots & \boldsymbol{w}_{n}\end{array}
$$\right]=\left[$$
\begin{array}{lll}\boldsymbol{v}_{1} & \cdots & \boldsymbol{v}_{m}\end{array}
$$\right]\left[\begin{array}{ccc}a_{11} \& \cdot \& a_{1 n}

\cdot \& \cdot \& \cdot

a_{m 1} \& \cdot \& a_{m n}\end{array}\right]\).

3.3 Column Space and Row Space : Bases by Elimination

$\begin{aligned} & \text { Every pivot }=\mathbf{1} \\ & \begin{array}{l}\text { Eliminate below } \\ \text { Eliminate above }\end{array}\end{aligned}\left[\begin{array}{lll}\mathbf{1} & 4 & 9 \\ 0 & 2 & 4 \\ 0 & 3 & 7\end{array}\right] \rightarrow\left[\begin{array}{lll}\mathbf{1} & 4 & 9 \\ 0 & \mathbf{1} & \mathbf{2} \\ 0 & 3 & 7\end{array}\right] \rightarrow\left[\begin{array}{lll}\mathbf{1} & 4 & 9 \\ 0 & \mathbf{1} & \mathbf{2} \\ 0 & \mathbf{0} & \mathbf{1}\end{array}\right] \rightarrow\left[\begin{array}{lll}\mathbf{1} & \mathbf{0} & \mathbf{1} \\ 0 & \mathbf{1} & \mathbf{2} \\ 0 & \mathbf{0} & \mathbf{1}\end{array}\right] \rightarrow \boldsymbol{R}_{\mathbf{0}}=\boldsymbol{I}$
$\boldsymbol{R}_{\mathbf{0}}=$ "reduced row echelon form" $=\operatorname{rref}(A)=\left[\begin{array}{l}\boldsymbol{r} \text { rows start with } 1 \\ \boldsymbol{m}-\boldsymbol{r} \text { rows of zeros }\end{array}\right]$
$r=\operatorname{rank} \quad A$ has r independent columns and r independent rows
$\boldsymbol{A}=\left[\begin{array}{ll}2 & 4 \\ 3 & 7 \\ 4 & 9\end{array}\right] \rightarrow\left[\begin{array}{ll}\mathbf{1} & 2 \\ 3 & 7 \\ 4 & 9\end{array}\right] \rightarrow\left[\begin{array}{ll}\mathbf{1} & 2 \\ \mathbf{0} & \mathbf{1} \\ 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{ll}\mathbf{1} & 2 \\ \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0}\end{array}\right] \rightarrow\left[\begin{array}{ll}\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0}\end{array}\right]=\left[\begin{array}{l}\boldsymbol{I} \\ \mathbf{0}\end{array}\right]=\boldsymbol{R}_{\mathbf{0}}$
$\begin{aligned} & \boldsymbol{I} \text { locates } r \text { independent columns } \\ & \boldsymbol{P} \text { permutes the columns if needed }\end{aligned} \quad \boldsymbol{R}_{\mathbf{0}}=\left[\begin{array}{cc}\boldsymbol{I} & \boldsymbol{F} \\ 0 & 0\end{array}\right] \boldsymbol{P}=\left[\begin{array}{l}\boldsymbol{r} \text { rows with } \boldsymbol{I} \\ \boldsymbol{m}-\boldsymbol{r} \text { zero rows }\end{array}\right]$
Basis for the column space $\quad \boldsymbol{C}=$ First \boldsymbol{r} independent columns of \boldsymbol{A}
Basis for the row space $\quad \boldsymbol{R}=\left[\begin{array}{ll}\boldsymbol{I} & \boldsymbol{F}\end{array}\right] \boldsymbol{P}=\boldsymbol{r}$ rows and $\boldsymbol{A}=\boldsymbol{C R}$

$$
\begin{gathered}
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
\mathbf{1} & 0 & \mathbf{1} \\
0 & \mathbf{1} & \mathbf{1}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{I} & \boldsymbol{F}
\end{array}\right]=\boldsymbol{R}_{\mathbf{0}}=\boldsymbol{R} \\
\boldsymbol{A}=\boldsymbol{C R} \text { is }\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{lll}
\mathbf{1} & 0 & 1 \\
0 & \mathbf{1} & 1
\end{array}\right] \quad \begin{array}{l}
\text { Row rank }=2 \\
\text { Column rank }=2
\end{array}
\end{gathered}
$$

3.4 $\boldsymbol{A} \boldsymbol{x}=0$ and $\boldsymbol{A x}=\boldsymbol{b}: x_{\text {nullspace }}$ and $x_{\text {particular }}$

 $\boldsymbol{A}=\left[\begin{array}{llll}1 & 2 & 1 & 4 \\ 2 & 4 & 3 & 9\end{array}\right] \rightarrow\left[\begin{array}{llll}\mathbf{1} & 2 & 1 & 4 \\ \mathbf{0} & 0 & 1 & 1\end{array}\right] \rightarrow\left[\begin{array}{llll}\mathbf{1} & 2 & \mathbf{0} & 3 \\ \mathbf{0} & 0 & \mathbf{1} & 1\end{array}\right]=\boldsymbol{R} \quad \begin{gathered}2 \text { columns of } I \\ 4-2 \text { columns of } F\end{gathered}$| Basis for nullspace |
| :--- |
| Special solutions |
| $A \boldsymbol{s}_{1}=\mathbf{0}$ and $A \boldsymbol{s}_{2}=\mathbf{0}$ |\(\quad \boldsymbol{s}_{1}=\left[\begin{array}{r}-2

\mathbf{1}

0

\mathbf{0}\end{array}\right] \quad \boldsymbol{s}_{2}=\left[\begin{array}{r}-3

\mathbf{0}

-1

\mathbf{1}\end{array}\right]\)| $2,3,1$ in R |
| :--- |
| $\leftarrow \mathbf{1}$ and $\mathbf{0}$ |
| $-2,-3,-1$ in S |
| $\leftarrow \mathbf{0}$ and $\mathbf{1}$ |

$$
\text { "Special" Dependent columns } 2 \text { and } 4=\text { combination of independent columns } 1 \text { and } 3
$$

Elimination from A to R reveals the $n-r$ special solutions
$\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{R} \boldsymbol{x}=\mathbf{0} \quad \boldsymbol{R} \boldsymbol{x}=\left[\begin{array}{lll}\boldsymbol{I} & \boldsymbol{F}\end{array}\right] \boldsymbol{P} \boldsymbol{x}=\mathbf{0} \quad \boldsymbol{S}=\left[\begin{array}{lll}\boldsymbol{s}_{1} \cdots & \boldsymbol{s}_{n-r}\end{array}\right]=\boldsymbol{P}^{\mathrm{T}}\left[\begin{array}{c}-\boldsymbol{F} \\ \boldsymbol{I}_{\boldsymbol{n}-\boldsymbol{r}}\end{array}\right]$
$P P^{\mathrm{T}}=I$ leads to $\boldsymbol{R S}=\mathbf{0} \quad \boldsymbol{r}$ equations $\quad \boldsymbol{n}-\boldsymbol{r}$ solutions
Complete solution to $\boldsymbol{A x}=\boldsymbol{b} \quad \boldsymbol{x}=\boldsymbol{x}_{\text {nullspace }}+\boldsymbol{x}_{\text {particular }}=$ above $\uparrow+$ below \downarrow

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\boldsymbol{A} & \boldsymbol{b}
\end{array}\right]=\left[\begin{array}{lllll}
1 & 2 & 1 & 4 & b_{1} \\
2 & 4 & 3 & 9 & b_{2}
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
\mathbf{1} & 2 & \mathbf{0} & 3 & d_{1} \\
\mathbf{0} & 0 & \mathbf{1} & 1 & d_{2}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{R} & \boldsymbol{d}
\end{array}\right] \quad \boldsymbol{x}_{\text {particular }}=\left[\begin{array}{c}
\boldsymbol{d}_{\mathbf{1}} \\
0 \\
\boldsymbol{d}_{\mathbf{2}} \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ll}
\boldsymbol{A}_{\text {new }} & \boldsymbol{b}_{\text {new }}
\end{array}\right]=\left[\begin{array}{rrrrr}
1 & 2 & 1 & 4 & b_{1} \\
2 & 4 & 3 & 9 & b_{2} \\
3 & 6 & 4 & 13 & b_{3}
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
\mathbf{1} & 2 & 0 & 3 & \boldsymbol{d}_{\mathbf{1}} \\
0 & 0 & \mathbf{1} & 1 & \boldsymbol{d}_{\mathbf{2}} \\
0 & 0 & 0 & 0 & \boldsymbol{d}_{\mathbf{3}}
\end{array}\right] \begin{array}{l}
\text { No solution if } d_{3} \neq 0 \\
\text { No solution if } b_{1}+b_{2} \neq b_{3} \\
\text { Elimination must give } \mathbf{0}=\mathbf{0}
\end{array}}
\end{aligned}
$$

3.5 Four Fundamental Subspaces $\mathbf{C}(A), \mathbf{C}\left(A^{\mathrm{T}}\right), \mathbf{N}(A), \mathbf{N}\left(A^{\mathrm{T}}\right)$

Fundamental Theorem of Linear Algebra, Part 1
The column space and row space both have dimension r. The nullspaces have dimensions $n-r$ and $m-r$.

This tells us the Counting Theorem : How many solutions to $A \boldsymbol{x}=\mathbf{0}$?
m equations, n unknowns, rank $r \Rightarrow A \boldsymbol{x}=\mathbf{0}$ has $n-r$ independent solutions
At least $n-m$ solutions. More for dependent equations (then $r<m$)
There is always a nonzero solution x to $A x=0$ if $n>m$

3.6 Graphs, Incidence Matrices, and Kirchhoff's Laws

nodes | x_{1} | x_{2} | x_{3} | x_{4} |
| ---: | ---: | ---: | :--- |

\(\boldsymbol{A}=\left[\begin{array}{rrrl}-\mathbf{1} \& \mathbf{1} \& 0 \& 0

\mathbf{- 1} \& 0 \& \mathbf{1} \& 0

0 \& \mathbf{- 1} \& \mathbf{1} \& 0

0 \& \mathbf{- 1} \& 0 \& \mathbf{1}

0 \& 0 \& \mathbf{- 1} \& \mathbf{1}\end{array}\right]\) | 1 |
| :---: |
| 2 |
| 3 |
| 4 |
| 5 |

This graph has 5 edges and 4 nodes. A is its 5 by 4 incidence matrix.
$\boldsymbol{b}=b_{1}$ to $b_{5}=$ currents. $\boldsymbol{x}=x_{1}$ to $x_{4}=$ voltages

Edges 1, 2, 3 form a loop in the graph
Dependent rows 1, 2, 3
Edges 1, 2, $\mathbf{4}$ form a tree. Trees have no loops! Independent rows 1, 2,4

The incidence matrix A comes from a connected graph with n nodes and m edges. The row space and column space have dimensions $r=n-1$. The nullspaces of A and A^{T} have dimensions 1 and $m-n+1$:
$\mathbf{N}(A)$ The constant vectors (c, c, \ldots, c) make up the nullspace of $A: \operatorname{dim}=1$.
$\mathbf{C}\left(A^{\mathrm{T}}\right)$ The edges of any spanning tree give r independent rows of $A: r=n-1$.
$\mathbf{C}(A)$ Voltage Law: The components of $A \boldsymbol{x}$ add to zero around all loops: dim $=n-1$.
$\mathbf{N}\left(A^{\mathrm{T}}\right)$ Current Law: $A^{\mathrm{T}} \boldsymbol{y}=($ flow in $)-($ flow out $)=\mathbf{0}$ is solved by loop currents.
There are $m-r=m-n+1$ independent small loops in the graph.
Currrent law $A^{\mathrm{T}} \boldsymbol{y}=\mathbf{0}$ at each node is fundamental to applied mathematics
3.7 Every A Has a Pseudoinverse $A^{+}\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]^{+}=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & 0\end{array}\right]$
A is invertible if and only if $m=n=r$ (rank). Then $A^{+}=A^{-1}$
A has a left inverse $A^{+}=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$ when $r=n: A^{+} A=I_{n}$
A has a right inverse $\boldsymbol{A}^{+}=\boldsymbol{A}^{\mathrm{T}}\left(\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\right)^{-\mathbf{1}}$ when $\boldsymbol{r}=\boldsymbol{m}: \boldsymbol{A} \boldsymbol{A}^{+}=\boldsymbol{I}_{\boldsymbol{m}}$
$\boldsymbol{A}=\boldsymbol{C} \boldsymbol{R}$ has a pseudoinverse $\boldsymbol{A}^{+}=\boldsymbol{R}^{+} \boldsymbol{C}^{+}$. Reverse the 4 subspaces
A Row space to column space
A^{+}Column space to row space

$\begin{aligned} & \text { Pseudoinverse } \boldsymbol{A}^{+}\end{aligned} \boldsymbol{A}^{+} \boldsymbol{A}=\left[\begin{array}{ll}\boldsymbol{I} & 0 \\ 0 & \mathbf{0}\end{array}\right] \begin{aligned} & \text { row space } \\ & \text { nullspace }\end{aligned} \quad \boldsymbol{A} \boldsymbol{A}^{+}=\left[\begin{array}{ll}\boldsymbol{I} & 0 \\ 0 & \mathbf{0}\end{array}\right] \begin{aligned} & \mathbf{C}(A) \\ & \mathbf{N}\left(A^{\mathrm{T}}\right)\end{aligned}$
$\boldsymbol{A}^{+}=\boldsymbol{V} \boldsymbol{\Sigma}^{+} \boldsymbol{U}^{\mathbf{T}}$ is computed from $A=U \Sigma V^{\mathrm{T}}: \Sigma^{+}$has $1 / \sigma$'s and 0 's

Example $\boldsymbol{A}=\left[\begin{array}{lll}\mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1}\end{array}\right]=\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]=\boldsymbol{C} \boldsymbol{R}$
The pseudoinverse A^{+}has the same rank $r=1$
Row space of $A=$ line in $\mathbf{R}^{3} \quad$ Column space of $A=$ line in \mathbf{R}^{2}
Reverse the column space and row space : \boldsymbol{v} and \boldsymbol{u}

$$
\boldsymbol{A}^{+}=\frac{\boldsymbol{v} \boldsymbol{u}^{\mathrm{T}}}{\|\boldsymbol{v}\|^{2}\|\boldsymbol{u}\|^{2}}=\frac{1}{6}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right]=\frac{\mathbf{1}}{\mathbf{6}}\left[\begin{array}{ll}
\mathbf{1} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} \\
\mathbf{1} & \mathbf{1}
\end{array}\right]
$$

Check $A^{+} A=\frac{1}{3}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]=\underset{\substack{\text { projection onto } \\ \text { row space of } \boldsymbol{A}}}{\underset{2}{2}} \quad A A^{+}=\frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=\underset{\text { projection onto }}{\text { column space of } \boldsymbol{A}}$

Part 4

Orthogonal Matrices and Least Squares

4.1 Orthogonality of the Four Subspaces
4.2 Projections onto Subspaces
4.3 Least Squares Approximations (Regression) : $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \widehat{\boldsymbol{x}}=\boldsymbol{A}^{\mathrm{T}} \boldsymbol{b}$
4.4 Orthogonal Matrices and Gram-Schmidt

Part 4 :
 Orthogonal Matrices and Least Squares

4.1 Orthogonality of the Four Subspaces

Vectors \boldsymbol{x} and \boldsymbol{y} are orthogonal if $\boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}=0$ (Complex vectors: $\overline{\boldsymbol{x}}^{\mathrm{T}} \boldsymbol{y}=0$)
Then $\|\boldsymbol{x}+\boldsymbol{y}\|^{2}=\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}=\|\boldsymbol{x}-\boldsymbol{y}\|^{2}$ (Right triangles: Pythagoras)
Orthogonal subspaces : Every \boldsymbol{v} in V is orthogonal to every \boldsymbol{w} in W
Two walls of a room are not orthogonal. Meeting line is in both subspaces !
The row space and the nullspace of any matrix are orthogonal The column space $\mathbf{C}(A)$ and nullspace $\mathbf{N}\left(A^{\mathrm{T}}\right)$: Also orthogonal

Clear from $A x=0 \quad A x=\left[\begin{array}{c}\underset{\text { row } 1}{\text { row } m}\end{array}\right][x]=\left[\begin{array}{l}0 \\ \dot{0}\end{array}\right]$
All rows are orthogonal to $\boldsymbol{x} \Rightarrow$ whole row space is orthogonal to \boldsymbol{x}
Big Picture of Linear Algebra : Two pairs of orthogonal subspaces
More : $r+(n-r)=$ full dimension n so every \boldsymbol{x} equals $\boldsymbol{x}_{\text {row }}+\boldsymbol{x}_{\text {null }}$

4.2 Projections onto Subspaces

\boldsymbol{b} is projected onto line through \boldsymbol{a} and onto column space of A
Error vector $\boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}$ is orthogonal to the line and subspace

$$
\text { Projection matrix } \boldsymbol{P} \quad P_{\text {line }}=\frac{\boldsymbol{a} \boldsymbol{a}^{\mathrm{T}}}{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}} \quad P_{\text {subspace }}=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}
$$

Notice $\boldsymbol{P}^{\mathbf{2}}=\boldsymbol{P}$ and $\boldsymbol{P}^{\mathbf{T}}=\boldsymbol{P} \quad$ Second projection: \boldsymbol{p} doesn't move!
Project $\boldsymbol{b}=\left[\begin{array}{l}6 \\ 0 \\ 0\end{array}\right] \begin{aligned} & \text { Line: } \\ & \text { Plane: }\end{aligned}$ Column spaces of $\boldsymbol{a}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right]$
$p_{\text {line }}=\boldsymbol{a} \frac{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b}}{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \frac{6}{3}=\left[\begin{array}{l}\mathbf{2} \\ \mathbf{2} \\ \mathbf{2}\end{array}\right] \quad$ Error $\boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}=\left[\begin{array}{r}4 \\ -2 \\ -2\end{array}\right]$
$p_{\text {plane }}$ Solve $\boldsymbol{A}^{\mathrm{T}} \widehat{\boldsymbol{x}}=\boldsymbol{A}^{\mathrm{T}} \boldsymbol{b} \quad\left[\begin{array}{ll}3 & 3 \\ 3 & 5\end{array}\right] \widehat{\boldsymbol{x}}=\left[\begin{array}{l}6 \\ 0\end{array}\right]$ gives $\widehat{\boldsymbol{x}}=\left[\begin{array}{r}5 \\ -3\end{array}\right]$
Projection $\boldsymbol{p}=A \widehat{\boldsymbol{x}}=\left[\begin{array}{r}5 \\ 2 \\ -1\end{array}\right]$ Error $\boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}=\left[\begin{array}{l}6 \\ 0 \\ 0\end{array}\right]-\left[\begin{array}{r}5 \\ 2 \\ -1\end{array}\right]=\left[\begin{array}{r}\mathbf{1} \\ -\mathbf{2} \\ \mathbf{1}\end{array}\right]$
What is the $\mathbf{3}$ by $\mathbf{3}$ projection matrix $P=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$? Then $p=P b$

4.3 Least Squares Approximations (Regression) : $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \widehat{\boldsymbol{x}}=\boldsymbol{A}^{\mathrm{T}} \boldsymbol{b}$

If $A \boldsymbol{x}=\boldsymbol{b}$ has no solution then minimize $E=\|\boldsymbol{b}-A \boldsymbol{x}\|^{\mathbf{2}}=\boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} A \boldsymbol{x}-2 \boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} \boldsymbol{b}+\boldsymbol{b}^{\mathrm{T}} \boldsymbol{b}$
Calculus Partial derivatives $\partial E / \partial x$ of that error E are zero
Linear algebra $A \boldsymbol{x}$ is in the column space of $A \quad$ Best $A \widehat{\boldsymbol{x}}=$ projection of \boldsymbol{b} on $\mathbf{C}(A)$
"Normal equations" $A^{\mathrm{T}} A \widehat{\boldsymbol{x}}=A^{\mathrm{T}} \boldsymbol{b}$ and then the projection is $\boldsymbol{p}=A \widehat{\boldsymbol{x}}$
Key example Closest straight line $y=C+D t$ to m points $\left(t_{i}, b_{i}\right)$

$\boldsymbol{m}>\mathbf{2}$	\boldsymbol{m} equations $\mathbf{2}$ unknowns No solution	$C+D t_{1}=b_{1}$ $\cdots \cdots \cdots \cdots$
	$C+D t_{m}=b_{m}$	

\cdot \& \cdot

\cdot \& \cdot

1 \& t_{m}\end{array}\right] \quad \boldsymbol{x}=\left[$$
\begin{array}{c}C \\
D\end{array}
$$\right] \quad \boldsymbol{b}=\left[$$
\begin{array}{c}b_{1} \\
\cdot \\
\cdot \\
b_{m}\end{array}
$$\right]\)

errors $e=$ vertical distances $b-p=(1,-2,1)$ to best line

$$
A^{\mathrm{T}} A \widehat{\boldsymbol{x}}=A^{\mathrm{T}} \boldsymbol{b} \quad\left[\begin{array}{cc}
m & \sum t_{i} \\
\sum t_{i} & \sum t_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right]\left[\begin{array}{r}
\mathbf{5} \\
-\mathbf{3}
\end{array}\right]=\left[\begin{array}{l}
6 \\
0
\end{array}\right]=\left[\begin{array}{c}
\sum b_{i} \\
\sum t_{i} b_{i}
\end{array}\right]
$$

4.4 Orthogonal Matrices and Gram-Schmidt

$\begin{array}{cccc}\begin{array}{c}\text { Orthogonal } \\ \text { columns }\end{array} & \left.\boldsymbol{Q}=\left[\begin{array}{lll}\boldsymbol{q}_{1} & \cdots & \boldsymbol{q}_{n}\end{array}\right] \quad \begin{array}{ll}\boldsymbol{q}_{i}^{\mathrm{T}} \boldsymbol{q}_{i}=1 \text { unit vectors } \\ \boldsymbol{q}_{i}^{\mathrm{T}} \boldsymbol{q}_{j}=0 \text { orthogonal } & \boldsymbol{Q}^{\mathrm{T}} \boldsymbol{Q}=\boldsymbol{I} \\ & \end{array}\right]\end{array}$
Important case $=$ Square matrix \quad Then $Q Q^{\mathrm{T}}=I \quad Q^{\mathrm{T}}=Q^{-1} \quad$ "Orthogonal matrix"
$Q=\frac{1}{3}\left[\begin{array}{rr}2 & -1 \\ 2 & 2 \\ -1 & 2\end{array}\right]$ has $\quad \begin{gathered}\boldsymbol{Q}^{\mathbf{T}} \boldsymbol{Q}=\boldsymbol{I} \\ \boldsymbol{Q} \boldsymbol{Q}^{\mathbf{T}} \neq \boldsymbol{I}\end{gathered} \quad Q=\frac{1}{3}\left[\begin{array}{rrr}2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2\end{array}\right] \quad \begin{gathered}\text { Now } Q^{\mathrm{T}}=Q^{-1} \\ \text { Orthogonal matrix }\end{gathered}$
Q_{1} times Q_{2} is orthogonal because $\left(Q_{1} Q_{2}\right)^{-1}=Q_{2}^{-1} Q_{1}^{-1}=Q_{2}^{\mathrm{T}} Q_{1}^{\mathrm{T}}=\left(Q_{1} Q_{2}\right)^{\mathrm{T}}$
$\boldsymbol{v}=c_{1} \boldsymbol{q}_{1}+\cdots+c_{n} \boldsymbol{q}_{n}$ leads to $c_{k}=\boldsymbol{q}_{k}^{\mathrm{T}} \boldsymbol{v} \quad \boldsymbol{v}=Q \boldsymbol{c}$ leads to $\boldsymbol{c}=Q^{\mathrm{T}} \boldsymbol{v}$
Gram-Schmidt \quad Start with independent $a, b, \boldsymbol{c} \quad$ Create orthogonal vectors $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}$
$\boldsymbol{q}_{1}=\frac{\boldsymbol{a}}{\|\boldsymbol{a}\|} \quad \boldsymbol{Q}_{2}=\boldsymbol{b}-\left(\boldsymbol{q}_{1}^{\mathrm{T}} \boldsymbol{b}\right) \boldsymbol{q}_{1} \quad \boldsymbol{q}_{2}=\frac{\boldsymbol{Q}_{2}}{\left\|\boldsymbol{Q}_{2}\right\|} \quad \boldsymbol{Q}_{\mathbf{3}}=\boldsymbol{c}-\left(\boldsymbol{q}_{1}^{\mathrm{T}} \boldsymbol{c}\right) \boldsymbol{q}_{1}-\left(\boldsymbol{q}_{2}^{\mathrm{T}} \boldsymbol{c}\right) \boldsymbol{q}_{2} \quad \boldsymbol{q}_{3}=\frac{\boldsymbol{Q}_{3}}{\left\|\boldsymbol{Q}_{3}\right\|}$
$\begin{aligned} & \text { Gram-Schmidt } \boldsymbol{A}=\boldsymbol{Q R} \\ & \boldsymbol{A}=(\text { orthogonal }) \text { (triangular) }\end{aligned} \quad \boldsymbol{A}=\left[\begin{array}{rr}\cos \theta & a_{12} \\ \sin \theta & a_{22}\end{array}\right]=\left[\begin{array}{rr}\boldsymbol{\operatorname { c o s } \theta} \boldsymbol{\theta} & -\sin \boldsymbol{\theta} \\ \sin \boldsymbol{\theta} & \cos \boldsymbol{\theta}\end{array}\right]\left[\begin{array}{ll}\mathbf{1} & \boldsymbol{r}_{12} \\ \mathbf{0} & \boldsymbol{r}_{22}\end{array}\right]=\boldsymbol{Q} \boldsymbol{R}$

Part 5

Determinant of a Square Matrix

$5.1 \quad 3$ by $\mathbf{3}$ and \boldsymbol{n} by \boldsymbol{n} Determinants

5.2 Cofactors and the Formula for \boldsymbol{A}^{-1}
5.3 Det $A B=(\operatorname{Det} A)(\operatorname{Det} B)$ and Cramer's Rule
5.4 Volume of Box $=\mid$ Determinant of Edge Matrix $E \mid$

Part 5 : Determinant of a Square Matrix

$5.1 \quad 3$ by 3 and \boldsymbol{n} by \boldsymbol{n} Determinants

$$
\left.\underset{\operatorname{det}=\mathbf{+ 1}}{\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right]} \underset{\mathbf{- 1}}{\left[\begin{array}{lll}
1 & 1 & \\
& & 1
\end{array}\right]} \underset{\mathbf{+ 1}}{\left[\begin{array}{lll}
& 1 & \\
1 & &
\end{array}\right]} \begin{array}{lll}
{\left[\begin{array}{lll}
{[1} & & \\
& & 1
\end{array}\right]} \\
& & \\
& & \\
1 & & 1 \\
& 1 &
\end{array}\right] \underset{\mathbf{- 1}}{\left[\begin{array}{lll}
1 & & \\
& & 1 \\
& 1 &
\end{array}\right]}
$$

Even permutations have $\operatorname{det} P=+\mathbf{1}$ Odd permutations have $\operatorname{det} P=\mathbf{- 1}$
Three defining properties 1 Row exchange reverses sign of det 2 det is linear in each row separately $\quad 3 \operatorname{det} I=1$

$\begin{array}{lllll}\mathrm{det}=+a q z & -b p z & +b r x & -c q x & +c p y\end{array}-a r y$

Linearity separates $\operatorname{det} A$ into $n!=3!=6$ simple determinants

Each term takes 1 number from each row and each column
BIG FORMULA $=$ Sum over all $n!$ orders $P=(j, k, \ldots, z)$ of the columns

$$
\operatorname{det} A=\sum(\operatorname{det} P) a_{1 j} a_{2 k} \ldots a_{n z} \text { as in }+a_{11} a_{22}-a_{12} a_{21}
$$

5.2 Cofactors and the Formula for \boldsymbol{A}^{-1}

3 by 3 determinant: 2 terms start with a and with b and with c
Cofactor formula $\quad \operatorname{det} A=a(\boldsymbol{q} \boldsymbol{z}-\boldsymbol{r y})+b(\boldsymbol{r} \boldsymbol{x}-\boldsymbol{p} \boldsymbol{z})+c(\boldsymbol{p} \boldsymbol{y}-\boldsymbol{q} \boldsymbol{x})$
\boldsymbol{n} factors $a, b, c \quad \boldsymbol{n}$ cofactors $=$ determinants of size $n-1$
Remove row i and column j from $A \quad$ Cofactor $C_{i j}=\operatorname{det} \operatorname{times}(-1)^{i+j}$
Cofactors along row $1 \quad \operatorname{det} A=a_{11} C_{11}+\cdots+a_{1 n} C_{1 n}$
Inverse formula $\boldsymbol{A}^{-1}=($ transpose of $C) /($ determinant of $\boldsymbol{A})$
Every entry of $A^{-1}=\frac{\text { cofactor }}{\operatorname{det} A}=\frac{\operatorname{det} \text { of size } n-1}{\operatorname{det} \text { of size } n}$
$n=2 \quad \boldsymbol{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \quad$ Cofactors $\boldsymbol{C}=\left[\begin{array}{rr}d & -c \\ -b & a\end{array}\right] \quad \boldsymbol{A}^{-\mathbf{1}}=\frac{\boldsymbol{C}^{\mathbf{T}}}{\boldsymbol{a d}-\boldsymbol{b} \boldsymbol{c}}$
$n=3 \quad \boldsymbol{A}=\left[\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right] \quad \boldsymbol{C}=\left[\begin{array}{lll}q z-r y & r x-p z & p y-q x \\ b z-c y & a z-c x & q x-p y \\ b r-c q & c p-a r & a q-b p\end{array}\right]$
$\boldsymbol{A} \boldsymbol{C}^{\mathbf{T}}=\left[\begin{array}{ccc}\operatorname{det} A & 0 & 0 \\ 0 & \operatorname{det} A & 0 \\ 0 & 0 & \operatorname{det} A\end{array}\right]=(\operatorname{det} \boldsymbol{A}) \boldsymbol{I} \quad$ This explains $\boldsymbol{A}^{-\mathbf{1}}=\frac{\boldsymbol{C}^{\mathbf{T}}}{\operatorname{det} \boldsymbol{A}}$

5.3 Det $A B=(\operatorname{Det} A)(\operatorname{Det} B)$ and Cramer's Rule

$\operatorname{det} \boldsymbol{A}=\operatorname{det} \boldsymbol{A}^{\mathrm{T}} \quad \operatorname{det} \boldsymbol{A B}=(\operatorname{det} \boldsymbol{A})(\operatorname{det} \boldsymbol{B}) \quad \operatorname{det} \boldsymbol{A}^{-1}=\frac{1}{\operatorname{det} \boldsymbol{A}}$
Orthogonal matrix $\operatorname{det} \boldsymbol{Q}= \pm \mathbf{1}$ because $Q^{\mathrm{T}} Q=I$ gives $(\operatorname{det} Q)^{2}=1$
Triangular matrix $\operatorname{det} U=u_{11} u_{22} \cdots u_{n n}$
$\operatorname{det} \boldsymbol{A}=\operatorname{det} \boldsymbol{L} \boldsymbol{U}=(\operatorname{det} \boldsymbol{L})(\operatorname{det} \boldsymbol{U})=$ product of the pivots $\boldsymbol{u}_{\boldsymbol{i i}}$
Cramer's Rule to Solve $\boldsymbol{A x}=\boldsymbol{b} \quad$ Start from

$$
\left[\begin{array}{ll}
\boldsymbol{A}
\end{array}\right]\left[\begin{array}{lll}
\boldsymbol{x}_{\mathbf{1}} & 0 & 0 \\
\boldsymbol{x}_{\mathbf{2}} & 1 & 0 \\
\boldsymbol{x}_{\mathbf{3}} & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{b}_{\mathbf{1}} & a_{12} & a_{13} \\
\boldsymbol{b}_{\mathbf{2}} & a_{22} & a_{23} \\
\boldsymbol{b}_{\mathbf{3}} & a_{32} & a_{33}
\end{array}\right]=\boldsymbol{B}_{\mathbf{1}}
$$

Use $\quad(\operatorname{det} \boldsymbol{A})\left(\boldsymbol{x}_{1}\right)=\left(\operatorname{det} \boldsymbol{B}_{1}\right)$ to find \boldsymbol{x}_{1}
$\left.\begin{array}{l}\text { Same } \\ \text { idea }\end{array} \quad \boldsymbol{A}\right]\left[\begin{array}{lll}1 & x_{1} & 0 \\ 0 & x_{2} & 0 \\ 0 & x_{3} & 1\end{array}\right]=\left[\begin{array}{lll}\boldsymbol{a}_{1} & \boldsymbol{b} & \boldsymbol{a}_{3}\end{array}\right]=\boldsymbol{B}_{2}$

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det} B_{1}}{\operatorname{det} A} \\
& x_{2}=\frac{\operatorname{det} B_{2}}{\operatorname{det} A}
\end{aligned}
$$

Cramer's Rule is usually not efficient! Too many determinants

$$
\left[\begin{array}{ll}
3 & 2 \\
5 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
12 \\
22
\end{array}\right] \quad \boldsymbol{B}_{1}=\left[\begin{array}{ll}
12 & 2 \\
22 & 4
\end{array}\right] \quad \boldsymbol{B}_{2}=\left[\begin{array}{ll}
3 & 12 \\
5 & 22
\end{array}\right] \quad x_{1}=\frac{\operatorname{det} B_{1}}{\operatorname{det} A}=\frac{4}{2} \quad x_{2}=\frac{2}{2}
$$

5.4 Volume of Box $=\mid$ Determinant of Edge Matrix $E \mid$

Rotate to align $\boldsymbol{A r e a}=\boldsymbol{u w}$
$\underset{\text { matrix }}{\text { Edge }} \quad \boldsymbol{E}=\left[\begin{array}{cc}\boldsymbol{a} & \boldsymbol{b} \\ \boldsymbol{c} & \boldsymbol{d}\end{array}\right]=\boldsymbol{Q R}=($ orthogonal $\boldsymbol{Q})($ triangular $\boldsymbol{R}) \quad \boldsymbol{R}=\left[\begin{array}{cc}\boldsymbol{u} & \boldsymbol{v} \\ \mathbf{0} & \boldsymbol{w}\end{array}\right]$
To Prove : Area of a parallelogram is $|\operatorname{det} \boldsymbol{E}|=|\boldsymbol{a d}-\boldsymbol{b} \boldsymbol{c}|=|\operatorname{det} \boldsymbol{R}|=\boldsymbol{u} \boldsymbol{w}$
2 D area Gram-Schmidt in 4.4 gives $\boldsymbol{E}=\boldsymbol{Q R}=$ (orthogonal) (triangular)
Orthogonal $Q:$ Rotates the shape $=$ No change in area!
Triangular $R: \boldsymbol{u}=$ base, $\boldsymbol{w}=$ height, $\boldsymbol{u} \boldsymbol{w}=\operatorname{area}=|\operatorname{det} \boldsymbol{R}|=|\operatorname{det} \boldsymbol{E}|$
3D volume Edges of box $=$ Rows of $\boldsymbol{E} \quad$ Volume $o f$ box $=|\operatorname{det} \boldsymbol{E}|=|\operatorname{det} \boldsymbol{R}|$
Orthogonal \boldsymbol{Q} : No volume change \quad Rotate box to see volume $=\boldsymbol{r}_{11} \boldsymbol{r}_{22} \boldsymbol{r}_{33}$ If the box is a unit cube : $E=$ identity matrix and volume $=1$

Any shape \quad Multiply all points by $A \quad$ Volume multiplies by $\operatorname{det} A$

Part 6

Eigenvalues and Eigenvectors : $A x=\lambda x$ and $A^{n} x=\lambda^{n} x$

6.1 Eigenvalues λ and Eigenvectors $x: A x=\lambda x$
6.2 Diagonalizing a Matrix : $X^{-1} A X=\Lambda=$ eigenvalues
6.3 Symmetric Positive Definite Matrices: Five Tests
6.4 Linear Differential Equations $\frac{d u}{d t}=A u$
6.5 Matrices in Engineering: Second differences

Part 6: Eigenvalues and Eigenvectors : $A x=\lambda x$ and $A^{n} x=\lambda^{n} x$

6.1 Eigenvalues $\boldsymbol{\lambda}$ and Eigenvectors \boldsymbol{x} : $\boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{x}$

$A \boldsymbol{x}$ is on the same line as $\boldsymbol{x} / \boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}$ means $(\boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{I}) \boldsymbol{x}=\mathbf{0}$
Then $\boldsymbol{A}^{\mathbf{2}} \boldsymbol{x}=\boldsymbol{A}(\lambda \boldsymbol{x})=\lambda(\boldsymbol{A} \boldsymbol{x})=\boldsymbol{\lambda}^{2} \boldsymbol{x} \quad A^{n} \boldsymbol{x}=\lambda^{n} \boldsymbol{x} \quad A^{-1} \boldsymbol{x}=\frac{1}{\lambda} \boldsymbol{x}$
Determinant of $\boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{I}=\mathbf{0}$ Solutions λ_{1} to $\lambda_{n}: A$ has n eigenvalues

$$
\begin{aligned}
& \boldsymbol{A}=\left[\begin{array}{ll}
.8 & .3 \\
.2 & .7
\end{array}\right] \quad \boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{I}=\left[\begin{array}{ll}
.8-\lambda & .3 \\
.2 & .7-\lambda
\end{array}\right] \\
& \operatorname{det}(\boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{I})=\boldsymbol{\lambda}^{2}-1.5 \lambda+.56-.06=(\lambda-\mathbf{1})\left(\lambda-\frac{1}{2}\right)
\end{aligned}
$$

Eigenvector x_{2}

$$
\text { for } \lambda_{2}=\frac{1}{2}
$$

$$
\left(A-\frac{1}{2} I\right) \boldsymbol{x}_{2}=\left[\begin{array}{ll}
.3 & .3 \\
.2 & .2
\end{array}\right]\left[\boldsymbol{x}_{2}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \text { gives } \boldsymbol{x}_{2}=\left[\begin{array}{r}
1 \\
-\mathbf{1}
\end{array}\right]
$$

$\begin{gathered}\text { Eigenvector } \boldsymbol{x}_{1} \\ \text { for } \boldsymbol{\lambda}_{\mathbf{1}}=\mathbf{1}\end{gathered} \quad(A-I) \boldsymbol{x}_{1}=\left[\begin{array}{rr}-.2 & .3 \\ .2 & -.3\end{array}\right]\left[\begin{array}{l}\boldsymbol{x}_{1}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad$ gives $\boldsymbol{x}_{1}=\left[\begin{array}{l}\mathbf{0 . 6} \\ \mathbf{0 . 4}\end{array}\right]$
What is $A^{10}\left[\begin{array}{l}1 \\ 0\end{array}\right]$? Separate into eigenvectors / Follow each eigenvector

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0.6 \\
0.4
\end{array}\right]+\left[\begin{array}{r}
0.4 \\
-0.4
\end{array}\right] \quad A^{10}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\mathbf{1}^{10}\left[\begin{array}{l}
\mathbf{0 . 6} \\
\mathbf{0 . 4}
\end{array}\right]+\left(\frac{\mathbf{1}}{\mathbf{2}}\right)^{\mathbf{1 0}}\left[\begin{array}{r}
\mathbf{0 . 4} \\
-\mathbf{0 . 4}
\end{array}\right]
$$

$$
\begin{array}{ll}
\text { Useful } & \text { Sum of } \lambda \prime s=\lambda_{1}+\cdots+\lambda_{n}=\text { trace of } A=a_{11}+a_{22}+\cdots+a_{n n} \\
\text { facts } & \text { Product of } \lambda^{\prime} s=\left(\lambda_{1}\right) \cdots\left(\lambda_{n}\right)=\text { determinant of } A
\end{array}
$$

Eigenvalues of $A+B$ and $A B$ are usually not $\lambda(A)+\lambda(B)$ and $\lambda(A) \lambda(B)$

6.2 Diagonalizing a Matrix : $X^{-1} A X=\Lambda=$ eigenvalues

Key idea / Follow each eigenvector separately / \boldsymbol{n} simple problems
$\begin{aligned} & \text { Eigenvector matrix } \boldsymbol{X} \\ & \text { Assume independent } \boldsymbol{x} \text { 's } \\ & \text { Then } X \text { is invertible }\end{aligned} \quad A X=A\left[\begin{array}{lll} & & \\ \boldsymbol{x}_{1} & \cdots & \boldsymbol{x}_{n}\end{array}\right]=\left[\begin{array}{lll} & & \\ \lambda_{1} \boldsymbol{x}_{1} & \cdots & \lambda_{n} \boldsymbol{x}_{n}\end{array}\right]$
$\left.\begin{array}{c}\boldsymbol{A} \boldsymbol{X}=\boldsymbol{X} \boldsymbol{\Lambda} \\ \boldsymbol{X}^{-\mathbf{1}} \boldsymbol{A} \boldsymbol{X}=\boldsymbol{\Lambda} \\ \boldsymbol{A}=\boldsymbol{X} \boldsymbol{\Lambda} \boldsymbol{X}^{-1}\end{array}\right] \quad\left[\begin{array}{lll}\lambda_{1} \boldsymbol{x}_{1} & \cdots & \lambda_{n} \boldsymbol{x}_{n}\end{array}\right]=\left[\begin{array}{lll}\boldsymbol{x}_{1} & \cdots & \boldsymbol{x}_{n} \\ & & \end{array}\right]\left[\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right]$
A^{k} becomes easy $\quad A^{k}=\left(X \Lambda X^{-1}\right)\left(X \Lambda X^{-1}\right) \cdots\left(X \Lambda X^{-1}\right)$
1
$\begin{array}{lll}\text { Same eigenvectors in } X & \boldsymbol{A}^{k}=\boldsymbol{X} \boldsymbol{\Lambda}^{k} \boldsymbol{X}^{-1} & \boldsymbol{\Lambda}^{k}=\text { (eigenvalues }^{\boldsymbol{k}}\end{array}$
$\left[\begin{array}{ll}\mathbf{1} & \mathbf{2} \\ \mathbf{0} & \mathbf{3}\end{array}\right]^{\mathbf{4}}=X \Lambda^{\mathbf{4}} X^{-1}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}\mathbf{1}^{\mathbf{4}} & 0 \\ 0 & \mathbf{3}^{4}\end{array}\right]\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 81 \\ 0 & 81\end{array}\right]\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}\mathbf{1} & \mathbf{8 0} \\ \mathbf{0} & \mathbf{8 1}\end{array}\right]$
2 Question: When does $\boldsymbol{A}^{k} \rightarrow$ zero matrix ?
Answer: $\operatorname{All}\left|\boldsymbol{\lambda}_{\boldsymbol{i}}\right|<1$
3 Some matrices are not diagonalizable
They don't have n independent vectors

$$
A=\left[\begin{array}{ll}
3 & 6 \\
0 & 3
\end{array}\right] \text { has } \lambda=\mathbf{3} \text { and } \mathbf{3}
$$

That A has double eigenvalue, single eigenvector \quad Only one $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ 4

All the "similar matrices" $\boldsymbol{B A B} \boldsymbol{B}^{-1}$ have the same eigenvalues as \boldsymbol{A}
If $A \boldsymbol{x}=\lambda \boldsymbol{x}$ then $\left(B A B^{-1}\right)(B \boldsymbol{x})=B A \boldsymbol{x}=B \lambda \boldsymbol{x}=\lambda(B \boldsymbol{x})$

6.3 Symmetric Positive Definite Matrices: Five Tests

If $S=S^{\mathrm{T}} \quad$ Eigenvalues λ are real \quad Eigenvectors x are orthogonal
$\boldsymbol{S}=\left[\begin{array}{ll}\mathbf{5} & \mathbf{4} \\ \mathbf{4} & \mathbf{5}\end{array}\right]=\boldsymbol{S}^{\mathbf{T}}$ has $S\left[\begin{array}{l}1 \\ 1\end{array}\right]=\mathbf{9}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $S\left[\begin{array}{r}-1 \\ 1\end{array}\right]=\left[\begin{array}{r}-1 \\ 1\end{array}\right] \quad \begin{gathered}\text { Notice } \\ \boldsymbol{x}_{1} \cdot \boldsymbol{x}_{2}=\mathbf{0}\end{gathered}\left[\begin{array}{l}1 \\ 1\end{array}\right] \cdot\left[\begin{array}{r}-1 \\ 1\end{array}\right]=\mathbf{0}$
$\boldsymbol{q}=\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}=\begin{array}{ll}\text { eigenvectors } \\ \text { length }=1\end{array} \quad \begin{aligned} & \text { Eigenvector matrix } Q \text { is an } \\ & \text { orthogonal matrix : } Q^{\mathrm{T}}=Q^{-1}\end{aligned} \quad \begin{gathered}\boldsymbol{S}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{-\mathbf{1}}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\mathrm{T}} \\ \text { Spectral theorem }\end{gathered}$
$\boldsymbol{S}=\left[\begin{array}{ll}\boldsymbol{5} & \mathbf{4} \\ \mathbf{4} & \mathbf{5}\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}\mathbf{9} & 0 \\ 0 & \mathbf{1}\end{array}\right]\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right] \frac{1}{\sqrt{2}}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\mathbf{T}}$
Positive definite matrices are the best. How to test S for $\lambda_{i}>0$?
Test 1 Compute the eigenvalues of S : All eigenvalues positive
Test $\mathbf{2}$ The energy $\boldsymbol{x}^{\mathrm{T}} \boldsymbol{S} \boldsymbol{x}$ is positive for every vector $\boldsymbol{x} \neq \mathbf{0}$
Test 3 The pivots in elimination on S are all positive
Test 4 The upper left determinants of S are all positive
Test $5 \boldsymbol{S}=\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}$ for some matrix A with independent columns
Positive semidefinite matrices can be singular: Test 5 is $\boldsymbol{S}=$ any $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}$
Eigenvalues and energy and pivots and determinants of S can be zero
$\left[\begin{array}{ll}2 & b \\ b & 4\end{array}\right] \quad$ Positive definite if $\boldsymbol{b}^{2}<8 \quad$ Semidefinite if $\boldsymbol{b}^{2} \leq 8$
$\begin{gathered}\text { Second difference matrix } \\ \text { Positive definite in } 6.5\end{gathered} \boldsymbol{S}=\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$
$\begin{gathered}\text { Positive semidefinite } \\ S \boldsymbol{x}=\mathbf{0} \text { for } \boldsymbol{x}=(1,1,1)\end{gathered} \quad \boldsymbol{S}=\left[\begin{array}{rrr}\mathbf{1} & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & \mathbf{1}\end{array}\right]$
6.4 Linear Differential Equations $\frac{d u}{d t}=A u$
$n=1 \quad \frac{d u}{d t}=a u$ is solved by $u(t)=C e^{a t}=u(0) e^{a t}$
$n \geq 1 \quad \frac{d u}{d t}=\boldsymbol{A} \boldsymbol{u}$ is solved by eigenvectors as in $\boldsymbol{u}(\boldsymbol{t})=\boldsymbol{c}_{1} e^{\boldsymbol{\lambda}_{1} t} \boldsymbol{x}_{1}$
The key is constant matrix $A \Leftrightarrow$ exponential solution $e^{\lambda t} \boldsymbol{x}$ when $A \boldsymbol{x}=\lambda \boldsymbol{x}$
Check: If $\boldsymbol{u}=e^{\lambda t} \boldsymbol{x}$ then $\frac{d \boldsymbol{u}}{d t}=\lambda e^{\lambda t} \boldsymbol{x}=A e^{\lambda t} \boldsymbol{x}=A \boldsymbol{u}$ as required
$A=\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right]$ has $\lambda_{1}=9 \quad \boldsymbol{u}_{1}=\boldsymbol{e}^{\mathbf{9 t}}\left[\begin{array}{l}\mathbf{1} \\ \mathbf{1}\end{array}\right] \quad \frac{d \boldsymbol{u}_{1}}{d t}=9 e^{9 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]=e^{9 t} A\left[\begin{array}{l}1 \\ 1\end{array}\right]=A \boldsymbol{u}_{1}$
Initial condition Split $\boldsymbol{u}(0)$ into $\boldsymbol{u}(0)$ at $t=0 \quad$ eigenvectors $\boldsymbol{x} \quad \boldsymbol{u}(0)=c_{1} \boldsymbol{x}_{1}+\cdots+c_{n} \boldsymbol{x}_{n}$

Each eigenvector goes its own way	Combine solutions	$u(t)=c_{1} e^{\lambda_{1} t} x_{1}+\cdots+c_{n} e^{\lambda_{n} t} \boldsymbol{x}_{n}$

Special case $\quad \begin{gathered}\lambda_{1}=\lambda_{2} \text { with } \\ \text { one eigenvector } \boldsymbol{x}\end{gathered} \quad \boldsymbol{u}(t)=c_{1} \boldsymbol{e}^{\boldsymbol{\lambda}_{\mathbf{1}} \boldsymbol{t}} \boldsymbol{x}_{1}+c_{2} \boldsymbol{t} \boldsymbol{e}^{\boldsymbol{\lambda}_{1} t} \boldsymbol{x}_{\mathbf{1}}$
Special case $\quad \begin{gathered}\lambda_{1}=\lambda_{2} \text { with } \\ \text { one eigenvector } \boldsymbol{x}\end{gathered} \quad \boldsymbol{u}(t)=c_{1} \boldsymbol{e}^{\boldsymbol{\lambda}_{1} \boldsymbol{t}} \boldsymbol{x}_{1}+c_{2} \boldsymbol{t} \boldsymbol{e}^{\boldsymbol{\lambda}_{1} t} \boldsymbol{x}_{1}$

Stability $\boldsymbol{u}(t) \rightarrow \mathbf{0}$ if all eigenvalues $\lambda=a+i b$ have real part $\boldsymbol{a}<\mathbf{0}$
Weak stability $\boldsymbol{u}(t) \rightarrow$ steady state if one λ moves up to $\boldsymbol{\lambda}=\mathbf{0}$
$\begin{array}{llrl}\text { Matrix } & \boldsymbol{e}^{A t} \text { is the } \\ \text { Exponential } & \text { solution matrix } & e^{A t} \boldsymbol{u}(0)=u(t) & e^{A t} \boldsymbol{x}=e^{\lambda t} \boldsymbol{x}\end{array}$
Exponential
Series $e^{A t}$

$$
\boldsymbol{e}^{\boldsymbol{x}}=1+x+\frac{x^{2}}{2}+\cdots+\frac{x^{n}}{n!}+\cdots \quad \boldsymbol{e}^{\boldsymbol{A}}=\boldsymbol{I}+\boldsymbol{A}+\frac{\boldsymbol{A}^{2}}{2}+\cdots+\frac{\boldsymbol{A}^{n}}{n!}+\cdots
$$

6.5 Matrices in Engineering : Second differences

$\begin{array}{ll}\begin{array}{l}\text { Centered } \\ \text { difference }\end{array} & \frac{\boldsymbol{d} \boldsymbol{u}}{\boldsymbol{d} \boldsymbol{x}} \approx \frac{u(x+h)-u(x-h)}{2 h}\end{array} \begin{aligned} & \text { Second } \\ & \text { difference }\end{aligned} \quad \frac{\boldsymbol{d}^{2} \boldsymbol{u}}{\boldsymbol{d x}^{\mathbf{2}}} \approx \frac{\boldsymbol{u}(\boldsymbol{x}+\boldsymbol{h})-\mathbf{2 u (x) + \boldsymbol { u } (\boldsymbol { x } - \boldsymbol { h })}}{\boldsymbol{h}^{2}}$
$\begin{aligned} & \text { Second } \\ & \text { differences } \\ & \text { with } u_{0}=u_{4}=0\end{aligned} \quad \frac{-d^{2} u}{d x^{2}} \approx \frac{1}{h^{2}}\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]=\frac{1}{h^{2}} K \boldsymbol{u}, ~$
Eigenvalues $2-\sqrt{2}, 2,2+\sqrt{2} \quad$ Pivots $\frac{2}{1}, \frac{3}{2}, \frac{4}{3} \quad$ Determinants $2,3,4$
$\begin{aligned} & \text { Energy } \\ & \boldsymbol{x}^{\mathbf{T}} \boldsymbol{K} \boldsymbol{x}\end{aligned}\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]\left[\begin{array}{l}\boldsymbol{K}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\begin{gathered}2\left(x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}-x_{2} x_{3}+x_{3}^{2}\right)>0 \\ \boldsymbol{K} \text { is positive definite }\end{gathered}$

Part 7

Singular Values and Vectors: $A v=\sigma u$ and $A=U \Sigma V^{\mathrm{T}}$
7.1 Singular Vectors in U, V and Singular Values in Σ
7.2 Reduced SVD / Full SVD / Construct $U \Sigma V^{\mathrm{T}}$ from $A^{\mathrm{T}} A$
7.3 The Geometry of the SVD : Rotate - Stretch - Rotate
7.4 $\quad A_{k}$ is Closest to A : Principal Component Analysis PCA
7.5 Computing Eigenvalues of S and Singular Values of A
7.6 Compressing Images by the SVD
7.7 The Victory of Orthogonality

Part 7: Singular Values and Vectors : $A v=\sigma u$ and $A=U \Sigma V^{T}$

7.1 Singular Vectors in U, V and Singular Values in Σ

An example shows orthogonal vectors \boldsymbol{v} going into orthogonal vectors \boldsymbol{u}
$A \boldsymbol{v}_{1}=\left[\begin{array}{ll}\mathbf{3} & 0 \\ \mathbf{4} & \mathbf{5}\end{array}\right]\left[\begin{array}{l}\mathbf{1} \\ \mathbf{1}\end{array}\right]=\left[\begin{array}{l}\mathbf{3} \\ \mathbf{9}\end{array}\right] \quad$ and $\quad A \boldsymbol{v}_{2}=\left[\begin{array}{ll}\mathbf{3} & 0 \\ \mathbf{4} & \mathbf{5}\end{array}\right]\left[\begin{array}{r}-\mathbf{1} \\ \mathbf{1}\end{array}\right]=\left[\begin{array}{r}-\mathbf{3} \\ \mathbf{1}\end{array}\right]$
$\boldsymbol{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is orthogonal to $\boldsymbol{v}_{2}=\left[\begin{array}{r}-1 \\ 1\end{array}\right] \quad\left[\begin{array}{l}3 \\ 9\end{array}\right]$ is orthogonal to $\left[\begin{array}{r}-3 \\ 1\end{array}\right]$
Divide both inputs \boldsymbol{v} by $\sqrt{2}$
Divide both outputs \boldsymbol{u} by $\sqrt{10}$

$$
\begin{aligned}
& \text { Matrix form } \\
& \boldsymbol{A} \boldsymbol{V}=\boldsymbol{U} \boldsymbol{\Sigma}
\end{aligned}\left[\begin{array}{ll}
\mathbf{3} & 0 \\
4 & 5
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{u}_{1} & \boldsymbol{u}_{2}
\end{array}\right]\left[\begin{array}{rr}
3 \sqrt{5} & 0 \\
0 & \sqrt{5}
\end{array}\right]
$$

\boldsymbol{V} and $\boldsymbol{U}=$ orthogonal matrices	$\boldsymbol{V}^{\mathrm{T}} \boldsymbol{V}=\boldsymbol{I}$	$\boldsymbol{U}^{\mathrm{T}} \boldsymbol{U}=\boldsymbol{I}$	$\boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{\mathrm{T}}$

$\boldsymbol{v}_{1}, \boldsymbol{v}_{2}=$ orthogonal basis for the row space $=$ inputs
$\boldsymbol{u}_{1}, \boldsymbol{u}_{2}=$ orthogonal basis for the column space $=$ outputs
$\boldsymbol{\sigma}_{1}=3 \sqrt{5}$ and $\boldsymbol{\sigma}_{2}=\sqrt{5}$ are the singular values of this A

7.2 Reduced SVD / Full SVD / Construct $U \Sigma V^{\mathrm{T}}$ from $A^{\mathrm{T}} \boldsymbol{A}$

Reduced SVD: Stop at \boldsymbol{u}_{r} and $\boldsymbol{v}_{\boldsymbol{r}} \quad$ Full SVD : Go on to $\boldsymbol{u}_{\boldsymbol{m}}$ and $\boldsymbol{v}_{\boldsymbol{n}}$
$\boldsymbol{A}=\boldsymbol{U}_{r} \boldsymbol{\Sigma}_{r} \boldsymbol{V}_{r}^{\mathrm{T}}=\left[\begin{array}{c}\boldsymbol{u}_{1} \text { to } \boldsymbol{u}_{r} \\ \text { column space } \\ m \times r\end{array}\right]\left[\begin{array}{lll}\boldsymbol{\sigma}_{1} & & \\ & \ddots & \\ r \text { by } r & \boldsymbol{\sigma}_{r}\end{array}\right]\left[\begin{array}{cc}\boldsymbol{v}_{1}^{\mathrm{T}} & \text { row } \\ \text { to } & \text { space } \\ \boldsymbol{v}_{r}^{\mathrm{T}} & r \times n\end{array}\right]$
$\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}=\left[\begin{array}{c}\boldsymbol{u}_{1} \text { to } \boldsymbol{u}_{m} \\ \text { columns } \\ m \times m\end{array}\right]\left[\begin{array}{llll}\boldsymbol{\sigma}_{1} & & & \\ & \cdot & & \\ & \boldsymbol{\sigma}_{r} & \\ m \text { by } n & 0 & 0\end{array}\right]\left[\begin{array}{cc}\boldsymbol{v}_{1}^{\mathrm{T}} & \text { row space } \\ \boldsymbol{v}_{r}^{\mathrm{T}} & n \times n \\ \boldsymbol{v}_{n}^{\mathrm{T}} & \text { nullspace }\end{array}\right]$
Key ideas $\quad \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}=V \Sigma^{\mathrm{T}} U^{\mathrm{T}} U \Sigma V^{\mathrm{T}}=\boldsymbol{V} \boldsymbol{\Sigma}^{\mathrm{T}} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathbf{T}} \quad \boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\mathrm{T}} \boldsymbol{U}^{\mathbf{T}}$
Eigenvectors! $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v}=\boldsymbol{\sigma}^{2} \boldsymbol{v}$ and $\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}=\boldsymbol{\sigma}^{2} \boldsymbol{u} \quad n \boldsymbol{v}$'s and $m \boldsymbol{u}$'s
$\begin{array}{ll}\text { The } \boldsymbol{u} \text { 's are chosen so that } A \boldsymbol{v}_{k}=\sigma_{k} \boldsymbol{u}_{k} & \sigma_{\mathbf{1}} \geq \cdots \geq \boldsymbol{\sigma}_{r}>0\end{array}$
$\boldsymbol{k} \leq \boldsymbol{r} \quad \boldsymbol{v}_{\boldsymbol{k}}$ and $\boldsymbol{\sigma}_{\boldsymbol{k}}^{2}$ from $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \quad \boldsymbol{u}_{k}=\frac{\boldsymbol{A} \boldsymbol{v}_{k}}{\boldsymbol{\sigma}_{k}} \quad \boldsymbol{u}_{j}^{\mathrm{T}} \boldsymbol{u}_{k}=\left(\frac{A \boldsymbol{v}_{j}}{\sigma_{j}}\right)^{\mathrm{T}} \frac{A \boldsymbol{v}_{k}}{\sigma_{k}}=\frac{\sigma_{k}}{\sigma_{j}} \boldsymbol{v}_{j}^{\mathrm{T}} \boldsymbol{v}_{k}=\mathbf{0}$

$\underset{\text { Square } \boldsymbol{A}}{ }\|\lambda\| \leq \sigma_{1}$
has

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 8 \\
0 & 0 & 0
\end{array}\right] \begin{array}{ll}
\lambda=0,0,0 \\
\sigma=8,1,(0)
\end{array} \\
& A=\boldsymbol{u}_{1} \sigma_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+\boldsymbol{u}_{2} \sigma_{2} \boldsymbol{v}_{2}^{\mathrm{T}}
\end{aligned} \begin{aligned}
& A \text { has rank } r=2 \\
& 2 \text { singular values }
\end{aligned}
$$

7.3 The Geometry of the SVD : Rotate - Stretch - Rotate

$\boldsymbol{A}=($ Orthogonal $)($ Diagonal $)($ Orthogonal $)$
$\boldsymbol{A}=\left[\begin{array}{ll}\boldsymbol{a} & \boldsymbol{b} \\ \boldsymbol{c} & \boldsymbol{d}\end{array}\right]=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{ll}\sigma_{1} & \\ & \sigma_{2}\end{array}\right]\left[\begin{array}{rr}\cos \phi & \sin \phi \\ -\sin \phi & \cos \phi\end{array}\right]$
Four numbers $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$ in A produce four numbers $\boldsymbol{\theta}, \boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{\phi}$ in the SVD 3×3 : Nine numbers in A produce which 9 numbers for $U \Sigma V^{\mathrm{T}}$?
$n \times n$: An orthogonal matrix comes from $\frac{1}{2} n(n-1)$ simple rotations
Inputs $\boldsymbol{x}=$ unit circle \quad Outputs $A \boldsymbol{x}=$ stretched ellipse
Radius vectors \boldsymbol{v}_{1} and $\boldsymbol{v}_{2} \quad$ Axis vectors $\boldsymbol{\sigma}_{1} \boldsymbol{u}_{\mathbf{1}}$ and $\boldsymbol{\sigma}_{\mathbf{2}} \boldsymbol{u}_{\mathbf{2}}$

7.4 A_{k} is Closest to A : Principal Component Analysis PCA

SVD $\quad \boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathbf{T}}=\boldsymbol{u}_{\boldsymbol{1}} \boldsymbol{\sigma}_{\mathbf{1}} \boldsymbol{v}_{\mathbf{1}}^{\mathbf{T}}+\cdots+\boldsymbol{u}_{\boldsymbol{r}} \boldsymbol{\sigma}_{\boldsymbol{r}} \boldsymbol{v}_{\boldsymbol{r}}^{\mathbf{T}} \quad A$ has rank r

$$
A_{k}=U_{k} \Sigma_{k} V_{k}^{\mathbf{T}}=u_{1} \sigma_{1} v_{1}^{\mathbf{T}}+\cdots+u_{k} \sigma_{k} v_{k}^{\mathbf{T}} \text { any } k \leq r
$$

Great fact This $\boldsymbol{A}_{\boldsymbol{k}}$ from the SVD is the closest rank \boldsymbol{k} matrix to \boldsymbol{A}
"Eckart-Young" $\quad\left\|A-A_{k}\right\| \leq\|A-B\|$ if B has rank k
Matrix norms $\quad\|A\|_{\ell^{2} \text { norm }}=\sigma_{1} \quad\|A\|_{\text {Frobenius }}=\sqrt{\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}}$
$\boldsymbol{A}_{\mathbf{0}}=$ matrix of data $\quad \boldsymbol{A}=$ subtract row average from each row of A_{0} $\boldsymbol{S}=\frac{\boldsymbol{A} \boldsymbol{A}^{\mathbf{T}}}{n-1}=$ sample covariance matrix is symmetric positive definite

Line closest to data is \boldsymbol{u}_{1} : The key to PCA Straight line fit using perpendicular distances $\boldsymbol{u}_{1}=$ eigenvector of $S \quad=$ first principal component $=$ singular vector of $A=$ captures most variance

Total variance of the data $=$ Add the eigenvalues of $S=\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}$

7.5 Computing Eigenvalues of S and Singular Values of A

Step 1 Produce zeros in the matrix $\quad S \rightarrow Q^{-1} S Q=\boldsymbol{S}_{0} \quad$ Same $\boldsymbol{\lambda}$'s $Q, Q_{1}, Q_{2}=$ orthogonal matrix $\quad A \rightarrow Q_{1}^{-1} A Q_{2}=\boldsymbol{A}_{0} \quad$ Same $\boldsymbol{\sigma}$'s

New $\boldsymbol{S}_{\mathbf{0}}$ has only 3 nonzero diagonals $\quad \boldsymbol{A}_{\mathbf{0}}$ has only 2 nonzero diagonals
Step 2 " $Q R$ method" uses Gram-Schmidt to orthogonalize columns $S=($ Orthogonal $Q)($ Upper triangular $R)$ at every step

Factor $S_{0}=Q_{0} R_{0} \quad$ Reverse $S_{1}=R_{0} Q_{0} \quad$ Repeat $S_{1}=Q_{1} R_{1}$ and $S_{2}=R_{1} Q_{1}$
Amazing : The off-diagonal entries get small : Watch $\sin \theta \rightarrow-\sin ^{3} \theta$

$$
\begin{aligned}
& \boldsymbol{S}_{\boldsymbol{k}}=\boldsymbol{Q}_{\boldsymbol{k}} \boldsymbol{R}_{\boldsymbol{k}} \quad\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & 0
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
1 & \sin \theta \cos \theta \\
0 & -\sin ^{2} \theta
\end{array}\right] \\
& \boldsymbol{S}_{\boldsymbol{k}+\boldsymbol{1}}=\boldsymbol{R}_{\boldsymbol{k}} \boldsymbol{Q}_{\boldsymbol{k}} \quad\left[\begin{array}{rr}
1 & \sin \theta \cos \theta \\
0 & -\sin ^{2} \theta
\end{array}\right]\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
* & * \\
-\sin ^{3} \boldsymbol{\theta} & *
\end{array}\right]
\end{aligned}
$$

S_{k} approaches Λ : The eigenvalues λ begin to appear on the diagonal Similar idea for $\mathrm{SVD}=$ Golub-Kahan algorithm : σ 's appear on the diagonal

7.6 Compressing Images by the SVD

Flag with $\left[\begin{array}{cccccc}B & B & B & B & B & B \\ B & B & B & B & B & B \\ W & W & W & W & W & W \\ W & W & W & W & W & W \\ R & R & R & R & R & R \\ R & R & R & R & R & R\end{array}\right]=\left[\begin{array}{c}B \\ B \\ W \\ W \\ R \\ R\end{array}\right]\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$

Triangular flag $\quad\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right] \quad \begin{aligned} & \text { This has all } \sigma>\frac{1}{2} \\ & \text { Poor compression }\end{aligned}$
Compress photographs https://timbaumann.info/svd-image-compression-demo/
Uncompressed image $\quad=600 \times 600=360,000$ pixels
Compressed image $U \Sigma V^{\mathrm{T}}=600 \times 100+100+100 \times 600=120,000$
Serious compression $U \Sigma V^{\mathrm{T}}=600 \times 20+20+20 \times 600=24,020$
Compression is highly developed See Wikipedia for Eigenfaces

7.7 The Victory of Orthogonality

1 Length of $Q \boldsymbol{x}=$ Length of $\boldsymbol{x} \quad\|Q \boldsymbol{x}\|^{2}=\|\boldsymbol{x}\|^{2} \quad(Q \boldsymbol{x})^{\mathrm{T}}(Q \boldsymbol{y})=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}$
2 All powers Q^{n} and all products $Q_{1} Q_{2}$ remain orthogonal
3 Reflection $\boldsymbol{H}=\boldsymbol{I}-2 \boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}=$ orthogonal + symmetric when $\boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}=1$
4 Symmetric matrices have orthogonal eigenvectors $S Q=Q \Lambda$
5 All matrices have orthogonal singular vectors \boldsymbol{v} 's and \boldsymbol{u} 's: $\boldsymbol{A} \boldsymbol{V}=\boldsymbol{U} \boldsymbol{\Sigma}$
6 The pseudoinverse of $U \Sigma V^{\mathrm{T}}$ is $\boldsymbol{V} \Sigma^{+} \boldsymbol{U}^{\mathrm{T}} \quad$ Nonzeros in Σ^{+}are $\frac{1}{\sigma}$
7 Polar decomposition $\boldsymbol{A}=\boldsymbol{Q S}=$ (orthogonal) (symm positive definite)
8 Gram-Schmidt $=$ Highly valuable $\boldsymbol{A}=\boldsymbol{Q R}=$ (orthogonal) (triangular)
9 Orthogonal functions for Fourier series $\boldsymbol{f}(x)=\sum a_{k} \boldsymbol{\operatorname { c o s }} \boldsymbol{k} \boldsymbol{x}+b_{k} \sin \boldsymbol{k} \boldsymbol{x}$

Part 8
Linear Transformations and Their Matrices
8.1 Examples of Linear Transformations
8.2 Derivative Matrix D and Integral Matrix D^{+}
8.3 Basis for V and Basis for $Y \Rightarrow$ Matrix for $T: V \rightarrow Y$

Part 8 : Linear Transformations and Their Matrices

8.1 Examples of Linear Transformations

\mathbf{V} and \mathbf{Y} are vector spaces (the vectors can be matrices or functions!)
\boldsymbol{T} is a linear transformation from \mathbf{V} to \mathbf{Y} (inputs to outputs)
Test for linearity $\quad \boldsymbol{T}(c \boldsymbol{v}+d \boldsymbol{w})=c \boldsymbol{T}(\boldsymbol{v})+d \boldsymbol{T}(\boldsymbol{w})$ for all $\boldsymbol{v}, \boldsymbol{w}$ in \boldsymbol{V}
Example $1 \quad \mathbf{V}=x-y$ plane Rotate the plane \mathbf{R}^{2} by a fixed angle θ
Straight lines rotate into straight lines (required by linearity)
Center point $\mathbf{0}=(0,0)$ stays put $T(\mathbf{0}+\mathbf{0})=T(\mathbf{0})+T(\mathbf{0})$ requires $T(\mathbf{0})=\mathbf{0}$
This \boldsymbol{T} has an inverse \boldsymbol{T}^{-1} : Rotate by $-\theta$ is another linear transformation
Example 2 Input space $\mathbf{V}=$ all 3 by 3 matrices $=$ output space \mathbf{Y}
T sets all off-diagonal entries to zero T (matrix $)=($ diagonal matrix $)$ T^{2} will be the same as $T: \quad T$ is like a projection on matrix space Multiply transformations $T_{2} T_{1}$ Output space for $T_{1}=$ Input space for T_{2} $T_{2} T_{1}$ obeys the same rule as matrix multiplication $\quad T_{2}\left(T_{1} \boldsymbol{x}\right)=\left(T_{2} T_{1}\right) \boldsymbol{x}$ Example $3 \quad \mathbf{V}=$ all functions $a+b x+c x^{2} \quad \mathbf{Y}=$ all functions $d+e x$ $\boldsymbol{T}\left(a+b x+c x^{2}\right)=$ derivative of the input function $=$ output $b+2 c x$

[^0]
8.2 Derivative Matrix \boldsymbol{D} and Integral Matrix \boldsymbol{D}^{+}

Choose basis $1, x, x^{2}$ for input space \mathbf{V} : Quadratic functions
Choose basis $1, x$ for output space \mathbf{Y} : Linear functions
Apply derivative transformation to the input basis $\boldsymbol{v}_{1}=1, \boldsymbol{v}_{2}=x, \boldsymbol{v}_{3}=x^{2}$
Express outputs $T\left(\boldsymbol{v}_{1}\right)=0, T\left(\boldsymbol{v}_{2}\right)=1, T\left(\boldsymbol{v}_{3}\right)=2 x$ in the output basis
$T\left(\boldsymbol{v}_{1}\right)=\mathbf{0} \quad T\left(\boldsymbol{v}_{2}\right)=\frac{d x}{d x}=1=\boldsymbol{u}_{1} \quad T\left(\boldsymbol{v}_{3}\right)=\frac{d}{d x}\left(x^{2}\right)=2 x=2 \boldsymbol{u}_{2}$
The columns of D show those derivatives with respect to the bases
$\boldsymbol{D}=\left[\begin{array}{lll}\mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 2\end{array}\right]=$ matrix form of the derivative $T=\frac{d}{d x}$
\boldsymbol{D} times $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}b \\ 2 c\end{array}\right]$ tells us the outputs from the inputs $a, b x, c x^{2}$
Integral transformation \boldsymbol{S} from \mathbf{Y} back to \mathbf{V} Inputs 1, x Outputs 1, x, x^{2}
$\boldsymbol{S}(1)=x=\boldsymbol{v}_{2} \quad \boldsymbol{S}(x)=\frac{1}{2} x^{2}=\frac{1}{2} \boldsymbol{v}_{3} \quad$ Integral matrix $\boldsymbol{E}=\left[\begin{array}{cc}\mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \frac{1}{2}\end{array}\right]$
Fundamental Theorem of Calculus: Derivative of integral of f is f
$D E=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & \frac{1}{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=$ identity transformation on \mathbf{Y}
$E D=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & \frac{1}{2}\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=$ only a projection on \mathbf{V}
$\boldsymbol{E}=\mathbf{p s e u d o i n v e r s e} \boldsymbol{D}^{+}$of \boldsymbol{D} Not the inverse because derivative of 1 is 0

8.3 Basis for V and Basis for $\mathrm{Y} \Rightarrow$ Matrix for $T: \mathbf{V} \rightarrow \mathbf{Y}$

Every linear transformation $\boldsymbol{T}: \mathbf{V} \rightarrow \mathbf{Y}$ can be expressed by a matrix A
That matrix A depends on the basis for \mathbf{V} and the basis for \mathbf{Y}
To construct A : Apply T to the input basis vectors \boldsymbol{v}_{1} to \boldsymbol{v}_{n}
Then $T\left(\boldsymbol{v}_{j}\right)=a_{1 j} \boldsymbol{y}_{1}+a_{2 j} \boldsymbol{y}_{2}+\cdots+a_{m j} \boldsymbol{y}_{m}$ gives column \boldsymbol{j} of A
Input $\boldsymbol{v}=c_{1} \boldsymbol{v}_{1}+\cdots+c_{n} \boldsymbol{v}_{n} \quad$ Output $\boldsymbol{y}=c_{1} T\left(\boldsymbol{v}_{1}\right)+\cdots+c_{n} T\left(\boldsymbol{v}_{n}\right)$
That output \boldsymbol{y} has coefficients $A \boldsymbol{c}$ in the output basis for \mathbf{Y}
Main point! Multiplication by \boldsymbol{A} copies the linear transformation \boldsymbol{T}
Both linear and both correct for basis \Rightarrow both correct for every input
Change input basis to $\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{n}$ Change output basis to $\boldsymbol{Y}_{1}, \ldots, \boldsymbol{Y}_{m}$
The matrix for the same T in these new bases is $M=Y^{-1} A V$
$\boldsymbol{V}=$ identity on input space : but basis change from \boldsymbol{v} 's to \boldsymbol{V} 's
$\boldsymbol{Y}=$ identity on output space : but basis change from \boldsymbol{y} 's to \boldsymbol{Y} 's

Part 9
 Complex Numbers and the Fourier Matrix

9.1 Complex Numbers $x+i y=r e^{i \theta}$: Unit circle $r=1$
9.2 Complex Matrices: Hermitian $S=\bar{S}^{\mathrm{T}}$ and Unitary $Q^{-1}=\bar{Q}^{\mathrm{T}}$
9.3 Fourier Matrix \boldsymbol{F} and the Discrete Fourier Transform
9.4 Cyclic Convolution and the Convolution Rule
9.5 FFT : The Fast Fourier Transform
$\mathbf{R}=$ line of all real numbers $-\infty<x<\infty \leftrightarrow \mathbf{C}=$ plane of all complex numbers $z=x+i y$ $|x|=$ absolute value of $x \quad \leftrightarrow \quad|z|=\sqrt{\boldsymbol{x}^{2}+y^{2}}=\boldsymbol{r}=$ absolute value (or modulus) of z 1 and -1 solve $x^{2}=1 \quad \leftrightarrow \quad z=1, w, \ldots, w^{n-1}$ solve $z^{n}=1$ where $w=e^{2 \pi i / n}$
The complex conjugate of $z=x+i y$ is $\overline{\boldsymbol{z}}=\boldsymbol{x}-\boldsymbol{i} \boldsymbol{y} . \quad|z|^{2}=x^{2}+y^{2}=z \bar{z}$ and $\frac{1}{z}=\frac{\bar{z}}{|z|^{2}}$.
The polar form of $z=x+i y$ is $|z| e^{i \theta}=\boldsymbol{r} \boldsymbol{e}^{i \boldsymbol{\theta}}=\boldsymbol{r} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}+\boldsymbol{i r} \sin \boldsymbol{\theta}$. The angle has $\tan \theta=\frac{y}{x}$.
\mathbf{R}^{n} : vectors with n real components $\leftrightarrow \mathbf{C}^{n}$: vectors with n complex components
length: $\|\boldsymbol{x}\|^{2}=x_{1}^{2}+\cdots+x_{n}^{2} \leftrightarrow$ length: $\|\boldsymbol{z}\|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}$
transpose: $\left(A^{\mathrm{T}}\right)_{i j}=A_{j i} \leftrightarrow$ conjugate transpose: $\left(A^{\mathrm{H}}\right)_{i j}=\overline{A_{j i}}$
dot product: $\boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}=x_{1} y_{1}+\cdots+x_{n} y_{n} \leftrightarrow$ inner product: $\boldsymbol{u}^{\mathrm{H}} \boldsymbol{v}=\bar{u}_{1} v_{1}+\cdots+\bar{u}_{n} v_{n}$
reason for $A^{\mathrm{T}}:(A \boldsymbol{x})^{\mathrm{T}} \boldsymbol{y}=\boldsymbol{x}^{\mathrm{T}}\left(A^{\mathrm{T}} \boldsymbol{y}\right) \leftrightarrow$ reason for $A^{\mathrm{H}}:(A \boldsymbol{u})^{\mathrm{H}} \boldsymbol{v}=\boldsymbol{u}^{\mathrm{H}}\left(A^{\mathrm{H}} \boldsymbol{v}\right)$ orthogonality: $\boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}=0 \leftrightarrow$ orthogonality: $\boldsymbol{u}^{\mathrm{H}} \boldsymbol{v}=0$
symmetric matrices: $S=S^{\mathrm{T}} \leftrightarrow$ Hermitian matrices: $S=S^{\mathrm{H}}$
$\boldsymbol{S}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\mathbf{- 1}}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\mathrm{T}}($ real $\Lambda) \leftrightarrow \boldsymbol{S}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{-\mathbf{1}}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\mathrm{H}}($ real $\Lambda)$
orthogonal matrices: $Q^{\mathrm{T}}=Q^{-1} \leftrightarrow$ unitary matrices: $U^{\mathrm{H}}=U^{-1}$ $(Q \boldsymbol{x})^{\mathrm{T}}(Q \boldsymbol{y})=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}$ and $\|Q \boldsymbol{x}\|=\|\boldsymbol{x}\| \leftrightarrow(U \boldsymbol{x})^{\mathrm{H}}(U \boldsymbol{y})=\boldsymbol{x}^{\mathrm{H}} \boldsymbol{y}$ and $\|U \boldsymbol{z}\|=\|\boldsymbol{z}\|$

Part 9 : Complex Numbers and the Fourier Matrix

9.1 Complex Numbers $x+i y=r e^{i \theta}$: Unit circle $r=1$

Complex numbers $\boldsymbol{z}=\boldsymbol{x}+\boldsymbol{i y} \quad x=$ real part $\quad \boldsymbol{y}=$ imaginary part
Magnitude $|z|=r=\sqrt{x^{2}+y^{2}} \quad$ Angle $\tan \theta=\frac{y}{x}$

$$
\text { Euler's Formula } \quad \boldsymbol{z}=\boldsymbol{r} \boldsymbol{e}^{i \boldsymbol{\theta}}=\boldsymbol{r} \cos \boldsymbol{\theta}+\boldsymbol{i r} \sin \boldsymbol{\theta}=r \frac{x}{r}+i r \frac{y}{r}
$$

Complex conjugate $\quad \bar{z}=x-i y=r e^{-i \theta} \quad$ Then $\bar{z} z=x^{2}+y^{2}=r^{2}$ Add $\overline{\boldsymbol{z}}_{\mathbf{1}}+\overline{\boldsymbol{z}}_{\mathbf{2}}=\overline{z_{1}+z_{2}} \quad$ Multiply $\left(\overline{\boldsymbol{z}}_{\mathbf{1}}\right)\left(\overline{\boldsymbol{z}}_{\mathbf{2}}\right)=\overline{z_{1} z_{2}} \quad$ Divide $\frac{\mathbf{1}}{\boldsymbol{z}}=\frac{\bar{z}}{|z|^{2}}=\frac{a-i b}{a^{2}+b^{2}}$

Add angles $\quad\left(r e^{i \theta}\right)\left(\boldsymbol{R} e^{i \phi}\right)=r \boldsymbol{R} e^{i(\theta+\phi)} \quad(i)^{4}=\left(e^{i \pi / 2}\right)^{4}=e^{i 2 \pi}=1$
9.2 Complex Matrices: Hermitian $S=\bar{S}^{\mathrm{T}}$ and Unitary $Q^{-1}=\bar{Q}^{\mathrm{T}}$

Rule When you transpose, take complex conjugates: $\overline{\boldsymbol{x}}^{\mathbf{T}} \overline{\boldsymbol{A}}^{\mathbf{T}}$
Automatic for computer systems like MATLAB and Julia
Inner product $=$ Dot product $=\overline{\boldsymbol{x}}^{\mathbf{T}} \boldsymbol{y}=\bar{x}_{1} y_{1}+\cdots+\bar{x}_{n} y_{n}$
Length squared $=\|\boldsymbol{x}\|^{2}=\overline{\boldsymbol{x}}^{\mathbf{T}} \boldsymbol{x}=\left|x_{1}\right|^{2}+\cdots+\left|x_{n}\right|^{2}=\|\operatorname{Re} \boldsymbol{x}\|^{2}+\|\operatorname{Im} \boldsymbol{x}\|^{2}$
Hermitian matrix $\quad S=\left[\begin{array}{cc}2 & 3-3 i \\ 3+3 i & 5\end{array}\right]=\bar{S}^{\mathrm{T}} \quad \begin{gathered}\text { Real diagonal } \\ S_{j i}=\bar{S}_{i j}\end{gathered}$
S has real eigenvalues $\mathbf{8},-1$ and perpendicular eigenvectors
$\operatorname{det}(S-\lambda I)=\lambda^{2}-7 \lambda+10-|3+3 i|^{2}=(\boldsymbol{\lambda}-\mathbf{8})(\boldsymbol{\lambda}+\mathbf{1})$
$(S-8 I)\left[\begin{array}{c}1 \\ \mathbf{1}+\boldsymbol{i}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad(\boldsymbol{S}+\boldsymbol{I})\left[\begin{array}{c}\mathbf{1 - i} \\ -\mathbf{1}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\left.\begin{array}{ll}\text { Unitary matrix } \\ \text { Orthonormal columns }\end{array} \quad \boldsymbol{Q}=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1-i \\ 1+i & -1\end{array}\right] \quad \begin{array}{c}\overline{\boldsymbol{Q}}^{\mathbf{T}}=\boldsymbol{Q}^{-1}\end{array} \begin{array}{c}\|Q \boldsymbol{z}\|=\|\boldsymbol{z}\| \\ |\boldsymbol{\lambda}|=\mathbf{1}\end{array}\right)$
The Fourier matrix $\frac{\boldsymbol{F}}{\sqrt{N}}$ is the most important unitary matrix

9.3 Fourier Matrix F and the Discrete Fourier Transform

Fourier Matrix $\boldsymbol{F}_{\mathbf{4}}=\left[\begin{array}{cccc}1 & \mathbf{1} & 1 & 1 \\ 1 & \boldsymbol{i} & i^{2} & i^{3} \\ 1 & \boldsymbol{i}^{2} & i^{4} & i^{6} \\ 1 & \boldsymbol{i}^{3} & i^{6} & i^{9}\end{array}\right] \quad$ DFT Matrix $\overline{\boldsymbol{F}_{\mathbf{4}}}=$ powers of $-\boldsymbol{i}$

$\boldsymbol{F}_{\boldsymbol{N}}$ and $\overline{\boldsymbol{F}_{\boldsymbol{N}}}$	Replace $\boldsymbol{i}=\boldsymbol{e}^{2 \pi i / 4}$		
\boldsymbol{N} by \boldsymbol{N} matrices	by $\boldsymbol{w}=\boldsymbol{e}^{2 \pi i / N}$	\quad	$\boldsymbol{F}_{\boldsymbol{j} \boldsymbol{k}}=\boldsymbol{w}^{\boldsymbol{j} \boldsymbol{k}}=\boldsymbol{e}^{2 \pi i j \boldsymbol{k} / \boldsymbol{N}}$
:---			
Columns $k=0$ to $N-1$			

$$
\begin{gathered}
w=e^{2 \pi i / 8} \quad w^{8}=1 \\
1+w+w^{2}+\cdots+w^{N-1}=0
\end{gathered}
$$

$\overline{\boldsymbol{F}_{N}} \boldsymbol{F}_{\boldsymbol{N}}=\boldsymbol{N I}$ Then F_{N} / \sqrt{N} is a unitary matrix. It has orthonormal columns
$\begin{aligned} & \boldsymbol{N}=\mathbf{2} \\ & \boldsymbol{w}=\boldsymbol{e}^{\pi i}=-\mathbf{1}\end{aligned} \quad \boldsymbol{F}_{\mathbf{2}}=\left[\begin{array}{rr}\mathbf{1} & \mathbf{1} \\ \mathbf{1} & -\mathbf{1}\end{array}\right] \quad \overline{\boldsymbol{F}}_{\mathbf{2}} \boldsymbol{F}_{\mathbf{2}}=\left[\begin{array}{ll}\mathbf{2} & 0 \\ 0 & \mathbf{2}\end{array}\right]=N I$
Discrete Fourier Transform f to $c \quad c=F_{N}^{-1} f$
Inverse Fourier Transform $\quad c$ to $f \quad f=F_{N} c$

9.4 Cyclic Convolution and the Convolution Rule

$$
\begin{array}{llrlrl}
\boldsymbol{c}=(1,2,3) & \text { Convolution } \boldsymbol{c} * \boldsymbol{d}=(\mathbf{5}, \mathbf{1 0}, \mathbf{1 9}, \mathbf{8}, \mathbf{1 2}) & \mathbf{1} & \mathbf{2} & \mathbf{3} \\
\boldsymbol{d}=(5,0,4) \quad \text { Cyclic } \boldsymbol{c} * \boldsymbol{d}=(\mathbf{5}+\mathbf{8}, \mathbf{1 0}+\mathbf{1 2}, \mathbf{1 9}) & \mathbf{5} & \mathbf{0} & \mathbf{4} \\
\left(1+2 x+3 x^{2}\right)\left(5+4 x^{2}\right)=5+10 x+19 x^{2}+8 x^{3}+12 x^{4} & & 4 & 8 & 12 \\
\boldsymbol{x}^{\mathbf{3}}=\mathbf{1} \text { for cyclic }(5+8)+(10+12) x+19 x^{2} & \begin{array}{rrrrr}
5 & 10 & 15 & & \\
\cline { 3 - 6 } & \mathbf{5} & \mathbf{1 0} & \mathbf{8} & \mathbf{1 2}
\end{array}
\end{array}
$$

$\begin{gathered}\text { Convolution matrices } \\ \text { Constant diagonals }\end{gathered} C=\left[\begin{array}{lll}\mathbf{1} & 3 & 2 \\ \mathbf{2} & 1 & 3 \\ \mathbf{3} & 2 & \mathbf{1}\end{array}\right] \quad D=\left[\begin{array}{lll}\mathbf{5} & 4 & 0 \\ \mathbf{0} & 5 & 4 \\ \mathbf{4} & 0 & 5\end{array}\right] \quad \begin{aligned} & C D=\left[\begin{array}{lll}\mathbf{1 3} & 19 & \mathbf{2 2} \\ \mathbf{2 2} & 13 & 19 \\ \mathbf{1 9} & 22 & \mathbf{1 3}\end{array}\right]\end{aligned}$
Eigenvectors of C and $D=$ columns of the Fourier matrix F
Eigenvalues of $C=F^{-1} c \quad$ Eigenvalues of $D=F^{-1} d$

Convolve vectors Multiply transforms	Convolution Rule $\boldsymbol{F}(\boldsymbol{c} * \boldsymbol{d})=(\boldsymbol{F} \boldsymbol{c}) \cdot *(\boldsymbol{F} \boldsymbol{d})$
$\boldsymbol{x} \cdot * \boldsymbol{y}=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)$	Key to Signal Processing

9.5 FFT : The Fast Fourier Transform

Direct matrix multiplication of c by F_{N} needs N^{2} multiplications
FFT factorization with many zeros : $\frac{1}{2} N \log _{2} N$ multiplications
$N=2^{10}=1024 \quad \log _{2} N=10 \quad 1$ million reduced to 5000
Step 1 of the FFT : From 1024 to 512 (Cooley-Tukey)

$$
\left[F_{1024}\right]=\left[\begin{array}{rr}
I & D \\
I & -D
\end{array}\right]\left[\begin{array}{rr}
F_{512} & 0 \\
0 & F_{512}
\end{array}\right]\left[\begin{array}{l}
P_{1024}
\end{array}\right]
$$

Permutation P_{1024} puts columns $0,2, \ldots, 1022$ ahead of $1,3, \ldots, 1023$
Two zero blocks reduce the computing time nearly by 50%
Step 2 of the FFT : 512 to 256 (same factorization of F_{512})
Recursion continues to small $N: \log _{2} N$ steps to Fast Transform
Each step has \boldsymbol{N} multiplications from the diagonal matrices \boldsymbol{D}
One overall permutation $=$ product of the P 's
FFTW is hardwired in many computers / bases other than 2

Part 10 Learning from Data by Gradient Descent

10.1 Learning Function $F\left(x, v_{0}\right)$: Data v_{0} and Weights x
10.2 Counting Flat Pieces in the Graph of F
10.3 Minimizing the Loss : Stochastic Gradient Descent
10.4 Slow Convergence with Zigzag: Add Momentum
10.5 Convolutional Neural Nets: CNN in 1D and 2D
10.6 Backpropagation : Chain Rule for $\boldsymbol{\nabla} \boldsymbol{F}$

Part 10 :
 Learning from Data by Gradient Descent

10.1 Learning Function $F\left(x, v_{0}\right)$: Data v_{0} and Weights x

Training data $=p$ features for N samples $=N$ vectors \boldsymbol{v}_{0}
Each of those N vectors enters level zero of the neural net
Level k from $k-1$: Multiply each vector by A_{k}, add \boldsymbol{b}_{k}, apply ReLU

$$
\boldsymbol{v}_{k}=F_{k}\left(\boldsymbol{v}_{k-1}\right)=\operatorname{ReLU}\left(A_{k} \boldsymbol{v}_{k-1}+\boldsymbol{b}_{k}\right)
$$

ReLU applies to each component of each vector: $\operatorname{ReLU}(\boldsymbol{y})=\boldsymbol{\operatorname { m a x }}(\boldsymbol{y}, \mathbf{0})$
$\mathbf{R e L U}=$ ramp function
$=$ Rectified Linear Unit

This gives the nonlinearity that learning functions need
Levels 0 to L
Output $\boldsymbol{v}_{L}=F_{L}\left(\ldots\left(F_{2}\left(F_{1}\left(\boldsymbol{v}_{0}\right)\right)\right)\right)=F\left(\boldsymbol{v}_{0}\right)$
$\boldsymbol{F}\left(\boldsymbol{x}, \boldsymbol{v}_{\mathbf{0}}\right)=$ Composition of L piecewise linear $F_{k}: F$ is piecewise linear
Each level contributes a weight matrix A_{k} and a vector \boldsymbol{b}_{k} to \boldsymbol{x}
Neural Net $\quad(A v)_{1} \quad\left[(A v+b)_{1}\right]_{+} \quad$ One hidden layer

$$
p=3, q=4 \quad(A \boldsymbol{v})_{\boldsymbol{q}} \quad\left[(A \boldsymbol{v}+\boldsymbol{b})_{\boldsymbol{q}}\right]_{+}
$$

10.2 Counting Flat Pieces in the Graph of \boldsymbol{F}

The weight matrices A_{k} and bias vectors \boldsymbol{b}_{k} produce $F=$ learning function Each application of ReLU creates a fold in the graph of F

The $r(2,1)=3$ pieces of the new fold H create new regions $\mathbf{1 b}, \mathbf{2 b}, \mathbf{3} \boldsymbol{b}$. Then the count becomes $r(3,2)=4+3=7$ flat regions in the continuous piecewise linear surface $\boldsymbol{v}_{2}=F\left(\boldsymbol{v}_{0}\right)$. A fourth fold would cross all three existing folds and create 4 new regions, so $r(4,2)=7+4=11$.

The count \boldsymbol{r} of linear pieces of F will follow from the recursive formula

$$
r(N, p)=r(N-1, p)+r(N-1, p-1)
$$

Theorem For \boldsymbol{v} in \mathbf{R}^{p}, suppose the graph of $F(\boldsymbol{v})$ has folds along N hyperplanes H_{1}, \ldots, H_{N}. Those come from ReLU at N neurons. Then the number of regions bounded by the N hyperplanes is $r(N, p)$:

$$
r(N, p)=\binom{N}{0}+\binom{N}{1}+\cdots+\binom{N}{p} .
$$

These binomial coefficients are

$$
\binom{\boldsymbol{N}}{\boldsymbol{i}}=\frac{N!}{i!(N-i)!} \text { with } 0!=1 \text { and }\binom{\boldsymbol{N}}{\mathbf{0}}=1 \text { and }\binom{\boldsymbol{N}}{\boldsymbol{i}}=0 \text { for } i>N .
$$

With more layers : N folds from N ReLU's : still $\approx r(N, p) \approx \boldsymbol{c} \boldsymbol{N}^{p}$ pieces

10.3 Minimizing the Loss : Stochastic Gradient Descent

The gradient of a function $\boldsymbol{F}\left(x_{1}, \ldots, x_{p}\right)$ is a vector $\boldsymbol{\nabla} \boldsymbol{F}=\operatorname{grad} \boldsymbol{F}$ $\boldsymbol{\nabla} \boldsymbol{F}=\left(\partial F / \partial x_{1}, \ldots, \partial F / \partial x_{n}\right)$ points in the steepest direction for $F(\boldsymbol{x})$ The graph of $\boldsymbol{y}=\boldsymbol{F}(\boldsymbol{x})=\boldsymbol{F}\left(x_{1}, \ldots, x_{N}\right)$ is a surface in $N+1$ dimensions

The graph of $F=x_{1}^{2}+x_{2}^{2}+5$ is a bowl in $2+1=3$ dimensions
Minimum of $F=\|\boldsymbol{x}\|^{2}+5$ is $F_{\min }=5$ at the point $\boldsymbol{x}=\arg \min \boldsymbol{F}=\mathbf{0}$
We want the minimizing point $\boldsymbol{x}=\arg \min \boldsymbol{F}$ for a complicated $F(\boldsymbol{x})$
Gradient descent starts from a point x_{0}. Go down along the gradient $\boldsymbol{\nabla} \boldsymbol{F}\left(\boldsymbol{x}_{0}\right)$
Stop at a point $\boldsymbol{x}_{\mathbf{1}}=\boldsymbol{x}_{\mathbf{0}}-s \boldsymbol{\nabla} \boldsymbol{F}\left(\boldsymbol{x}_{\mathbf{0}}\right)$. Stepsize $=$ learning rate $=s=$ maybe .001 Recompute the gradient $\boldsymbol{\nabla} \boldsymbol{F}\left(\boldsymbol{x}_{1}\right)$ at the new point \boldsymbol{x}_{1}

At every step follow the gradient $\boldsymbol{\nabla} \boldsymbol{F}\left(\boldsymbol{x}_{k}\right)$ to $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-s_{k} \boldsymbol{\nabla} \boldsymbol{F}\left(\boldsymbol{x}_{k}\right)$
Big Problem 1 Many unknowns x_{1} to x_{N} : all weights in all L layers
Big Problem $2 \boldsymbol{F}(\boldsymbol{x})=$ sum of errors in all training samples: many terms
Error Square loss $\left\|\begin{array}{l}\text { output } \\ \text { layer } L\end{array}-\begin{array}{c}\text { known } \\ \text { output }\end{array}\right\|^{2}$ or "Cross-entropy loss"
Solution 1 Use error in only one randomly chosen sample / one \boldsymbol{v}_{0}
Solution \boldsymbol{B} Use sum of errors in only \boldsymbol{B} random samples: minibatch
Stochastic gradient descent has new sampling at every step. Successful

10.4 Slow Convergence with Zigzag: Add Momentum

Test example: Minimize $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{2}\left(\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{y}^{2}\right)$ with small $\boldsymbol{b}>0$
Gradient $\boldsymbol{\nabla} \boldsymbol{F}=(x, b y)$. Exact search $\left(x_{k+1}, y_{k+1}\right)=\left(x_{k}, y_{k}\right)-($ best $s) \boldsymbol{\nabla} \boldsymbol{F}$

$$
\boldsymbol{x}_{k}=b\left(\frac{b-1}{b+1}\right)^{k} \quad \boldsymbol{y}_{k}=\left(\frac{1-b}{1+b}\right)^{k} \quad \boldsymbol{F}\left(\boldsymbol{x}_{k}, \boldsymbol{y}_{k}\right)=\left(\frac{1-b}{1+b}\right)^{2 k} F(b, 1)
$$

Crucial ratio $\left(\frac{1-b}{1+b}\right)^{2}$ is near 1 for small b : Slow convergence !
The path zig-zags across a narrow valley : moves slowly down to $(0,0)$

Heavy ball Add momentum Direction $\boldsymbol{z}_{\boldsymbol{k}+\boldsymbol{1}}$ remembers $\boldsymbol{z}_{\boldsymbol{k}}$

$$
(x, y)_{k+1}=(x, y)_{k}-s \boldsymbol{z}_{k} \quad \boldsymbol{z}_{k+1}-\boldsymbol{\nabla} \boldsymbol{F}(x, y)_{k+1}=\beta \boldsymbol{z}_{k}
$$

$\begin{array}{ll}\text { Optimal } s \\ \text { Optimal } \beta & \text { give fast descent : ratio } \frac{1-b}{1+b} \text { changes to } \frac{1-\sqrt{b}}{1+\sqrt{b}}\end{array}$

$$
b=\frac{1}{100} \quad\left(\frac{1-b}{1+b}\right)^{2}=\left(\frac{.99}{1.01}\right)^{2} \approx .96 \text { changes to }\left(\frac{0.9}{1.1}\right)^{2} \approx .67!
$$

ADAM $\quad G_{k}$ combines all earlier gradients by $\boldsymbol{G}_{k}=\delta \boldsymbol{G}_{k-1}+(1-\delta) \boldsymbol{\nabla} \boldsymbol{F}\left(\boldsymbol{x}_{k}\right)$
Question Why do the weights (matrices A_{k}) work well for unseen data?

10.5 Convolutional Neural Nets : CNN in 1D and 2D

Convolution matrix $=$ Moving average
A has constant diagonals
$A=\left[\begin{array}{llll}\frac{1}{2} & \frac{1}{2} & & \\ & \frac{1}{2} & \frac{1}{2} & \\ & & \frac{1}{2} & \frac{1}{2}\end{array}\right]$

2D Convolution for Images

Windows move across and down
Nine 3×3 windows in 5×5 square
Center points are marked 1 to 9
Only $3^{2}=9$ weights to choose

A convolutional filter treats all positions the same

1. Many weights repeated-distant weights are zero
2. $3^{2}=9$ weights copied in every window
3. No reason to treat positions differently-"shift invariant"

Recognizing digits (like Zip codes) in MNIST : Basic test data
Max-pooling Reduce dimensions Take max from each block of outputs
Softmax Convert outputs \boldsymbol{w}_{k} to probabilities $\boldsymbol{p}_{k}=e^{w_{k}} / \sum e^{w_{k}}$
Residual network Add skip connections that jump several layers
Batch normalization Reset the input variance at each new layer

10.6 Backpropagation : Chain Rule for $\boldsymbol{\nabla} \boldsymbol{F}$

$F(x)=$ minimum $\quad \nabla F=$ partial derivatives $\quad \boldsymbol{\partial}$ errors $/ \boldsymbol{\partial}$ weights $=$ zero
Chain rule $\quad \frac{d}{d x}\left(F_{2}\left(F_{1}(x)\right)\right)=\left(\frac{d F_{2}}{d F_{1}}\left(F_{1}(x)\right)\right)\left(\frac{d F_{1}}{d x}(x)\right)$
Multivariable chain rule $\frac{\partial w}{\partial u}=\left(\frac{\partial w}{\partial v}\right)\left(\frac{\partial v}{\partial u}\right) \quad \begin{aligned} & L \text { layers in chain } \\ & \text { Multiply } L \text { matrices }\end{aligned}$

$$
\left.\frac{\partial \boldsymbol{w}}{\partial \boldsymbol{v}}=\left[\begin{array}{ccc}
\frac{\partial w_{1}}{\partial v_{1}} & \cdots & \frac{\partial w_{1}}{\partial v_{n}} \\
& \cdots & \\
\frac{\partial w_{p}}{\partial v_{1}} & \cdots & \frac{\partial w_{p}}{\partial v_{n}}
\end{array}\right] \quad \begin{array}{c}
\left.\frac{\partial \boldsymbol{v}}{\partial \boldsymbol{u}}=\left[\begin{array}{ccc}
\frac{\partial v_{1}}{\partial u_{1}} & \cdots & \frac{\partial v_{1}}{\partial u_{m}} \\
& \cdots & \\
\frac{\partial v_{n}}{\partial u_{1}} & \cdots & \frac{\partial v_{n}}{\partial u_{m}}
\end{array}\right], ~\right]
\end{array}\right]
$$

$\begin{gathered}\text { At each layer } \\ \text { Derivatives before ReLU }\end{gathered} \quad \boldsymbol{w}=A \boldsymbol{v}+\boldsymbol{b} \quad \frac{\partial w_{i}}{\partial b_{j}}=\delta_{i j}=0$ or $1 \quad \frac{\partial w_{i}}{\partial A_{j k}}=\delta_{i j} v_{k}$
$A B$ first or $B C$ first? Forward or back?
For $\boldsymbol{\nabla} \boldsymbol{F}$ in deep learning, going backward is faster : Reverse mode $\boldsymbol{B C}$ first
Example $A=\boldsymbol{m} \times \boldsymbol{n} \quad B=\boldsymbol{n} \times \boldsymbol{p} \quad C=\boldsymbol{p} \times \mathbf{1}$ vector Don't multiply $\boldsymbol{A B}$!
Backpropagation $=$ Automatic Differentiation $=$ the key to speed

Part 11

Basic Statistics : Mean, Variance, Covariance

11.1 Mean and Variance: Actual and Expected
11.2 Probability Distributions : Binomial, Poisson, Normal
11.3 Covariance Matrices and Joint Probabilities
11.4 Three Basic Inequalities of Statistics
11.5 Markov Matrices and Markov Chains

Basic Statistics : Mean, Variance, Covariance

11.1 Mean and Variance : Actual and Expected

The sample mean $\boldsymbol{\mu}$ is the average of outputs from N trials
The expected mean \boldsymbol{m} is based on probabilities p_{1}, \ldots, p_{n} of outputs x_{1}, \ldots, x_{n}

$$
\text { Expected value } m=\mathbf{E}[x]=p_{1} x_{1}+\cdots+p_{n} x_{n}
$$

Law of Large Numbers : With probability 1, sample mean $\rightarrow m$ as $N \rightarrow \infty$
The sample variance measures the spread around the sample mean μ

$$
\boldsymbol{S}^{\mathbf{2}}=\frac{1}{N-1}\left[\left(x_{1}-\mu\right)^{2}+\cdots+\left(x_{N}-\mu\right)\right]^{2}
$$

The variance is the expected value of $(x-m)^{2}$ based on probabilities

$$
\boldsymbol{\sigma}^{\mathbf{2}}=\mathrm{E}\left[(x-m)^{2}\right]=p_{1}\left(x_{1}-m\right)^{2}+\cdots+p_{n}\left(x_{n}-m\right)^{2}
$$

Second formula for this important number : $\sigma^{2}=\sum p_{i} x_{i}^{2}-m^{2}$
Fair coin flip $x=0$ or $1, p_{1}=p_{2}=\frac{1}{2}$: Mean $\boldsymbol{m}=\frac{1}{2} \quad$ Variance $\sigma^{2}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$
Continuous probability distributions: Sums change to integrals

$$
\int p(x) d x=1 \quad m=\int x p(x) d x \quad \sigma^{2}=\int(x-m)^{2} p(x) d x
$$

11.2 Probability Distributions : Binomial, Poisson, Normal

1 Binomial : $\boldsymbol{p}_{\boldsymbol{k}, \boldsymbol{n}}=$ probability of \boldsymbol{k} heads in \boldsymbol{n} trials (coin flips)

$$
p_{1,1}=p \quad p_{n, n}=p^{n} \quad p_{k, n}=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k} \quad(0!=1)
$$

Mean m in n trials $=\boldsymbol{n} \boldsymbol{p} \quad$ Variance σ^{2} in n trials $=\boldsymbol{n} \boldsymbol{p}(\mathbf{1} \boldsymbol{- p})$
2 Poisson: Rare events $\boldsymbol{p} \rightarrow \mathbf{0}$, many trials $\boldsymbol{n} \rightarrow \infty$ Keep $\boldsymbol{n} \boldsymbol{p}=\boldsymbol{\lambda}$ constant
No successes $\boldsymbol{p}_{0, n}=(1-p)^{n}=\left(1-\frac{\lambda}{n}\right)^{n} \rightarrow \boldsymbol{e}^{-\boldsymbol{\lambda}} \quad \boldsymbol{k}$ successes $\boldsymbol{p}_{\boldsymbol{k}, \boldsymbol{n}} \rightarrow \frac{\boldsymbol{\lambda}^{\boldsymbol{k}}}{\boldsymbol{k}!} \boldsymbol{e}^{-\boldsymbol{\lambda}}$
Poisson mean $=\boldsymbol{\lambda} \quad$ variance $\boldsymbol{\sigma}^{\mathbf{2}}=\boldsymbol{\lambda} \quad$ Limits of binomial $n p$ and $n p(1-p)$
3 Normal distribution: $\mathbf{N}\left(m, \sigma^{2}\right)$ has $p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-m)^{2} / 2 \sigma^{2}}$
Bell-shaped curve / Symmetric around mean / Standard $\mathbf{N}(0,1)$ is $\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$
Shifted and scaled $\quad \boldsymbol{X}=\frac{\boldsymbol{x}-\boldsymbol{m}}{\boldsymbol{\sigma}} \quad$ Centered and normalized
Central Limit Theorem for any distribution $p(x)$ Average many samples
The probabilities for the average \bar{X} of X_{1} to X_{M} approaches $\mathbf{N}(0,1)$ as $M \rightarrow \infty$
Normal $\boldsymbol{p}(\boldsymbol{x})$ for \boldsymbol{n} variables Means $\boldsymbol{m}=\left(m_{1}, \ldots, m_{n}\right)$ Covariance matrix \boldsymbol{V}

$$
\boldsymbol{p}(\boldsymbol{x})=\boldsymbol{p}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(\sqrt{\mathbf{2 \pi}})^{\boldsymbol{n}} \sqrt{\operatorname{det} \boldsymbol{V}}} e^{-(\boldsymbol{x}-\boldsymbol{m})^{\mathrm{T}} \boldsymbol{V}^{-1}(\boldsymbol{x}-\boldsymbol{m}) / \mathbf{2}}
$$

11.3 Covariance Matrices and Joint Probabilities

M experiments at once $\quad M=2$ for (age x, height y)
Mean $\boldsymbol{m}=\left(m_{x}, m_{y}\right)=$ (average age, average height)

$$
\text { Joint probabilities } \quad p_{i j}=\text { probability that age }=\boldsymbol{i} \text { and height }=\boldsymbol{j}
$$

$\boldsymbol{p}_{\boldsymbol{i}}=\sum_{j} p_{i j}=$ probability that age $=\boldsymbol{i}$ allowing all heights \boldsymbol{j}
Expected value of $\left(x-m_{x}\right)^{2}=\boldsymbol{\sigma}_{11}^{2}=\sum \boldsymbol{p}_{\boldsymbol{i}}\left(x_{i}-m_{x}\right)^{2}=$ usual variance
Expected value of $\left(x-m_{x}\right)\left(y-m_{y}\right)=\boldsymbol{\sigma}_{12}=\sum_{i} \sum_{j} \boldsymbol{p}_{i j}\left(x_{i}-m_{x}\right)\left(y_{j}-m_{y}\right)$
Covariance matrix $\boldsymbol{V}=\sum_{i} \sum_{j} p_{i j}\left[\begin{array}{cc}\left(x_{i}-m_{x}\right)^{2} & \left(x_{i}-m_{x}\right)\left(y_{j}-m_{y}\right) \\ \left(x_{i}-m_{x}\right)\left(y_{j}-m_{y}\right) & \left(y_{j}-m_{y}\right)^{2}\end{array}\right]$
$V=$ sum of positive semidefinite rank 1 matrices $=$ semidefinite or definite V is positive definite unless age tells you the exact height (dependent case)
V is a diagonal matrix if age and height are independent : covariance $=0$ Glue 2 coins together $\quad \boldsymbol{V}=\left[\begin{array}{ll}1 / 4 & 1 / 4 \\ 1 / 4 & 1 / 4\end{array}\right]=\begin{aligned} & \text { dependent case : } \\ & \text { semidefinite } V\end{aligned}$

Coin flip

Separate the coins $\quad \boldsymbol{V}=\left[\begin{array}{rr}1 / 4 & 0 \\ 0 & 1 / 4\end{array}\right]=\begin{aligned} & \text { independent : } \\ & \text { diagonal } V\end{aligned}$

11.4 Three Basic Inequalities of Statistics

Markov's inequality when $x \geq 0$: No negative samples
The probability of $x \geq a$ is at most $\frac{\mathrm{E}[x]}{a}=\frac{\text { mean } m}{a}$
Suppose $\boldsymbol{a}=3$ and mean $\boldsymbol{m}=\sum x_{i} p_{i}=0 p_{0}+1 p_{1}+2 p_{2}+\cdots$
Markov's inequality says probability $p_{3}+p_{4}+p_{5}+\cdots \leq \frac{m}{3}$
Write $\boldsymbol{m}=p_{1}+2 p_{2}+\mathbf{3}\left(\boldsymbol{p}_{\mathbf{3}}+\boldsymbol{p}_{\mathbf{4}}+\boldsymbol{p}_{\mathbf{5}}+\cdots\right)+p_{4}+2 p_{5}+\cdots$
No negative terms so $\boldsymbol{m} \geq \mathbf{3}\left(\boldsymbol{p}_{\mathbf{3}}+\boldsymbol{p}_{\mathbf{4}}+\boldsymbol{p}_{5}+\cdots\right)$ THIS IS MARKOV
Chebyshev's inequality The probability of $|x-m| \geq a$ is at most $\frac{\sigma^{2}}{a^{2}}$
Proof Apply Markov's inequality to the new variable $y=|x-m|^{2}$
The mean value $\mathrm{E}[\boldsymbol{y}]$ for \boldsymbol{y} is the variance $\boldsymbol{\sigma}^{\mathbf{2}}$ for \boldsymbol{x}
Apply Markov! The probability of $y \geq a^{2}$ is at most $\frac{\mathrm{E}[y]}{a^{2}}=\frac{\sigma^{2}}{a^{2}}$
Chernoff's inequality $S=X_{1}+\cdots+X_{n}$ independent random variables What is the probability that S is far from its mean \bar{S} ?

$$
\begin{array}{|l|}
\hline \operatorname{Prob}(\boldsymbol{S} \geq(\mathbf{1}+\boldsymbol{\delta}) \overline{\boldsymbol{S}}) \leq e^{-\bar{S} \delta^{2} /(2+\delta)} \\
\operatorname{Prob}(\boldsymbol{S} \leq(\mathbf{1}-\boldsymbol{\delta}) \overline{\boldsymbol{S}}) \leq e^{-\bar{S} \delta^{2} / 2}
\end{array} \quad \text { Exponential dropoff ! }
$$

Reason : A large sum S usually needs several X_{i} to be large / unlikely !

11.5 Markov Matrices and Markov Chains

Markov matrix \quad All $M_{i j} \geq 0 \quad$ All columns add to 1
$\begin{array}{lll}\text { Perron-Frobenius } & \lambda_{\max }=1 & \mid \text { other } \lambda \mid<1 \text { if all } M_{i j}>0 \\ \text { Eigenvalues of } \boldsymbol{M} & & \mid \text { other } \lambda \mid \leq 1 \text { if all } M_{i j} \geq 0\end{array}$
Markov chain $\quad \boldsymbol{p}_{\boldsymbol{n}+\boldsymbol{1}}=\boldsymbol{M} \boldsymbol{p}_{\boldsymbol{n}} \quad$ Probabilities at times $n+1$ and n
$\boldsymbol{M}=\left[\begin{array}{cc}0.8 & 0.3 \\ 0.2 & 0.7\end{array}\right]$ has $\lambda=1$ and $\lambda=\frac{1}{2} \quad M^{n}$ has $\lambda=1$ and $\lambda=\left(\frac{1}{2}\right)^{n}$
$\left[\begin{array}{l}\text { Rental cars in Chicago } \\ \text { Rental cars in Denver }\end{array}\right]_{n+1}=\boldsymbol{M}\left[\begin{array}{l}\text { in Chicago } \\ \text { in Denver }\end{array}\right]_{n} \quad \boldsymbol{y}_{n+1}=\boldsymbol{M} \boldsymbol{y}_{n}$
Start in Chicago $\boldsymbol{y}_{0}=\left[\begin{array}{c}100 \\ 0\end{array}\right] \quad \boldsymbol{y}_{1}=\left[\begin{array}{l}80 \\ 20\end{array}\right] \quad \boldsymbol{y}_{2}=\left[\begin{array}{l}70 \\ 30\end{array}\right] \quad \boldsymbol{y}_{3}=\left[\begin{array}{l}65 \\ 35\end{array}\right]$
Start in Denver $\quad \boldsymbol{y}_{0}=\left[\begin{array}{c}0 \\ 100\end{array}\right] \quad \boldsymbol{y}_{1}=\left[\begin{array}{l}30 \\ 70\end{array}\right] \quad \boldsymbol{y}_{2}=\left[\begin{array}{l}45 \\ 55\end{array}\right] \quad \boldsymbol{y}_{\boldsymbol{\infty}}=\left[\begin{array}{l}\mathbf{6 0} \\ \mathbf{4 0}\end{array}\right]$
Steady state from every start : Eigenvector of M for $\lambda=1$ is $\left[\begin{array}{l}60 \\ 40\end{array}\right]$
Other eigenvalue $\lambda=\frac{1}{2}$: Distance to $\left[\begin{array}{l}60 \\ 40\end{array}\right]$ is halved at every step

MIT OpenCourseWare
https://ocw.mit.edu/

18.06SC Linear Algebra

Fall 2011

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: "Derivative" is a linear transformation! Otherwise calculus would fail
 "Integral" is also a linear transformation on a space of functions

