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PROFESSOR STRANG: Shall we start? The main job of today is eigenvalues and 
eigenvectors. The next section in the book and a very big topic and things to say 
about it. I do want to begin with a recap of what I didn't quite finish last time. So 
what we did was solve this very straightforward equation. Straightforward except 
that it has a point source, a delta function. And we solved it, both the fixed-fixed 
case when a straight line went up and back down and in the free-fixed case when it 
was a horizontal line and then down with slope minus one. And there are different 
ways to get to this answer. But once you have it, you can look at it and say, well is it 
right? Certainly the boundary conditions are correct. Zero slope went through zero, 
that's good. And then the only thing you really have to check is does the slope drop 
by one at the point of the impulse? because that's what this is forcing us to do. It's 
saying the slope should drop by one. And here the slope is 1-a going up. And if I 
take the derivative, it's -a going down. 1-a dropped to -a, good. Here the slope was 
zero. Here the slope was minus one, good. So those are the right answers. And this 
is simple, but really a great example. 

And then, what I wanted to do was catch the same thing for the matrices. So those 
matrices, we all know what K is and what T is. So I'm solving, I'm really solving K 
inverse equal identity. That's the equation I'm solving. So I'm looking for K inverse 
and trying to get the columns of the identity. And you realize the columns of the 
identity are just like delta vectors. They've got a one in one spot, they're a point load 
just like this thing. So can I just say how I remember K inverse? I finally, you know, 
again there are different ways to get to it. One way is MATLAB, just do it. But I guess 
maybe the whole point is, the whole point of these and the eigenvalues that are 
coming too, is this. That we have here the chance to see important, special cases 
that work out. Normally we don't find the inverse, print out the inverse of a matrix. 
It's not nice. Normally we just let eig find the eigenvalues. Because that's an even 
worse calculation, to find eigenvalues, in general. I'm talking here about our 
matrices of all sizes n by n. Nobody finds the eigenvalues by hand of n by n 
matrices. But these have terrific eigenvalues and especially eigenvectors. 

So in a way this is a little bit like, typical of math. That you ask about general stuff or 
you write the equation with a matrix A. So that's the general information. And then 
there's the specific, special guys with special functions. And here there'll be sines and 
cosines and exponentials. Other places in applied math, there are Bessel functions 
and Legendre functions. Special guys. So here, these are special. And how do I 
complete K inverse? So this four, three, two, one. 

Let me complete T inverse. You probably know T inverse already. So T, this is, four, 
three, two, one, is when the load is way over at the far left end and it's just 
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descending. And now I'm going to, let me show you how I write it in. Pay attention 
here to the diagonal. So this will be three, three, two, one. Do you see that's the 
solution that's sort of like this one? That's the second column of the inverse so it's 
solving, I'm solving T times T inverse equals I here. It's the second column is the 
guy with a one in the second place. So that's where the load is, in position number 
two. So I'm level, three, three up to that load. And then I'm dropping after the load. 
What's the third column of T inverse? I started with that first column and I knew that 
the answer would be symmetric because T is symmetric, so that allowed me to write 
the first row. And now we can fill in the rest. So what do you think, if the point load 
is now, I'm looking at the third column, third column of the identity, the load has 
moved down to position number three. So what do I have there and there? Two and 
two. And what do I have last? One. It's dropping to zero. You could put zero in green 
here if you wanted. Zero is the unseen last boundary, you know, row at this end. 
And finally, what's happening here? What do I get from that? All one, one, one to the 
diagonal. And then sure enough it drops to zero. So this would be a case where the 
load is there. It would be one, one, one, one and then boom. No, it wouldn't be. It'd 
be more like this. One, one, one, one and then down to. 

That's a pretty clean inverse. That's a very beautiful matrix. Don't you admire that 
matrix? I mean, if they were all like that, gee, this would be a great world. But of 
course it's not sparse. That's why we don't often use the inverse. Because we had a 
sparse matrix T that was really fast to compute with. And here, if you tell me the 
inverse, you've actually slowed me down. Because you've given me now a dense 
matrix, no zeroes even and multiplying T inverse times the right side would be 
slower than just doing elimination. 

Now this is the kind of more interesting one. Because this is the one that has to go 
up to the diagonal and then down. So let me, can I fell in what I the way this one 
goes? I'm going upwards to the diagonal and then I'm coming down to zero. 
Remember that I'm coming down to zero on this K. So Zero, zero, zero, zero is kind 
of the row number. If that's row number zero, here's one, two, three, four, the real 
thing. And then row five is getting back to zero again. So what do you think, finish 
the rest of that column. So you're telling me now the response to the load in position 
two. So it's going to look like this. In fact, it's going to look very like this. There's the 
three and then this is in position two. And then I'm going to have something here 
and something here and it'll drop to zero. What do I get? Four, two. Six, four, two, 
zero. It's dropping to Zero. I'm going to finish this in but then I'm going to look back 
and see have I really got it right. How does this go now? Two, let's see. Now it's 
going up from zero to two to four to six. That's on the diagonal. Now it starts down. 
It's got to get to zero, so that'll be a three. Here is a one going up to two to three to 
four. Is that right? And then dropped fast to zero. Is that correct? Think so, yep. 
Except, wait a minute now. We've got the right overall picture. Climbing up, dropping 
down. Climbing up, dropping down. Climbing up, dropping down. All good. 

But we haven't yet got, we haven't checked yet that the change in the slope is 
supposed to be one. And it's not. Here the slope is like, three, It's going up by threes 
and then it's going down by twos. So we've gone from going up at a slope of three to 
down to a slope of two. Up three, down just like this. But that would be a change in 
slope of five. Therefore there's a 1/5. So this is going up with a slope of four and 
down with a slope of one. four dropping to one when I divide by the five that's what 
I like. Here is up by twos, down by threes, again it's a change of five so I need the 
five. Up by ones, down by four. Sudden, that's a fast drop of four. Again, the slope 
changed by five, dividing by five, that's got it. So that's my picture. You could now 



create K inverse for any size. And more than that, sort of see into K inverse what 
those numbers are. Because if I wrote the five by five or six by six doing it a column 
at a time, it would look like a bunch of numbers. But you see it now. Do you see the 
pattern? Right. This is one way to get to those inverses, and homework problems are 
offering other ways. T, in particular, is quite easy to invert. 

Do I have any other comment on inverses before the lecture on eigenvalues really 
starts? Maybe I do have one comment, one important comment. It's this, and I won't 
develop it in full, but let's just say it. What if the load is not a delta function? What if 
I have other loads? Like the uniform load of all ones or any other load? What if the 
discrete load here is not a delta vector? I now know the responses to each column of 
the identity, right? If I put a load in position one, there's the response. If I put a load 
in position two, there is the response. Now, what if I have other loads? Let me take a 
typical load. What if the load was, well, the one we looked at before. If the load was 
. So that I had, the bar was hanging by its own weight, let's say. In other words, 
could I solve all problems by knowing these answers? That's what I'm trying to get 
to. If I know these special delta loads, then can I get the solution for every load? 
Yes, no? What do you think? Yes, right. Now with this matrix it's kind of easy to see 
because if you know the inverse matrix, well you're obviously in business. If I had 
another load, say another load f for load, I would just multiply by K inverse, no 
problem. But I want to look a little deeper. Because if I had other loads here than a 
delta function, obviously if I had two delta functions I could just combine the two 
solutions. That's linearity that we're using all the time. If I had ten delta functions I 
could combine them. But then suppose I had instead of a bunch of spikes, instead of 
a bunch of point loads, I had a distributed load. Like all ones, how could I do it? 

Main point is I could. Right? If I know these answers, I know all answers. If I know 
the response to a load at each point, then-- come back to the discrete one. What 
would be the answer if the load was ? Suppose I now try to solve the equation 
Ku=ones(4,1), so all ones. What would be the answer? How would I get it? I would 
just add the columns. Now why would I do that? Right. Because this, the right-hand 
side, the input is the sum of the four columns, the four special inputs. So the output 
is the sum of the four outputs, right. In other words, as you saw, we must know 
everything. And that's the way we really know it. By linearity. If the input is a 
combination of these, the output is the same combination of those. Right. So, for 
example, in this T case, if input was, if I did Tu=ones, I would just add those and the 
output would be . That would be the output from . 

And now, oh boy. Actually, let me just introduce a guy's name for these solutions 
and not today show you. You have the idea, of course. Here we added because 
everything was discrete. So you know what we're going to do over here. We'll take 
integrals , right? A general load will be an integral over point loads. That's the idea. 
A fundamental idea. That some other load, f(x) is an integral of these guys. So the 
solution will be the same integral of these guys. Let me not go there except to tell 
you the name, because it's a very famous name. This solution u with the delta 
function is called the Green's function. So I've now introduced the idea, this is the 
Green's function. This guy is the Green's function for the fixed-fixed problem. And 
this guy is the Green's function for the free-fixed problem. And the whole point is, 
maybe this is the one point I want you to sort of see always by analogy. The Green's 
function is just like the inverse. 

What is the Green's function? The Green's function is the response at x to the u(x) 
when the input, when the impulses is at a. So it sort of depends on two things. It 



depends on the position a of the input and it tells you the response at position x. And 
often we would use the letter G for Green's. So it depends on x(a). And maybe I'm 
happy if you just sort of see in some way what we did there is just like what we did 
here. And therefore the Green's function must be just a differential, continuous 
version of an inverse matrix. 

Let's move on to eigenvalues with that point sort of made, but not driven home by 
many, many examples. Question, I'll take a question, shoot. Why did I increase zero, 
three, six and then decrease six? Well intuitively it's because this is copying this. 
What's wonderful is that it's a perfect copy. I mean, intuitively the solution to our 
difference equation should be like the solution to our differential equation. That's 
why if we have some computational, some differential equation that we can't solve, 
which would be much more typical than this one, that we couldn't solve it exactly by 
pencil and paper, we would replace derivatives by differences and go over here and 
we would hope that they were like pretty close. Here they're right, they're the same. 
Oh the other columns? Absolutely. These guys? Zero, two, four, six going up. Six, 
three, zero coming back. So that's a discrete thing of one like that. And then the 
next guy and the last guy would be going up one, two, three, four and then sudden 
drop. 

Thanks for all questions. I mean, this sort of, by adding these guys in, the first one 
actually went up that way. You see the Green's functions. But of course this has a 
Green's function for every a. x and a are running all the way from zero to one. Here 
they're just discrete positions. Thanks. So playing with these delta functions and 
coming up with this solution, well, as I say, different ways to do it. I worked through 
one way in class last time. It takes practice. So that's what the homework's really 
for. You can see me come up with this thing, then you can, with leisure, you can 
follow the steps, but you've gotta do it yourself to see. 

Eigenvalues and, of course, eigenvectors. We have to give them a fair shot. Square 
matrix. So I'm talking about general, what eigenvectors and eigenvalues are and 
why do we want them. I'm always trying to say what's the purpose, you know, not 
doing this just for abstract linear algebra. We do this, we look for these things 
because they tremendously simplify a problem if we can find it. So what's an 
eigenvector? The eigenvalue is this number, lambda, and the eigenvector is this 
vector y. And now, how do I think about those? Suppose I take a vector and I 
multiply by A. So the vector is headed off in some direction. Here's a vector v. If I 
multiply, and I'm given this matrix, so I'm given the matrix, whatever my matrix is. 
Could be one of those matrices, any other matrix. If I multiply that by v, I get some 
result, Av. What do I do? I look at that and I say that v was not an eigenvector. 
Eigenvectors are the special vectors which come out in the same direction. Av comes 
out parallel to v. So this was not an eigenvector. 

Very few vectors are eigenvectors, they're very special. Most vectors, that'll be a 
typical picture. But there's a few of them where I've a vector y and I multiply by A. 
And then what's the point? Ay is in the same direction. It's on that same line as y. It 
could be, it might be twice as far out. That would be Ay=2y. It might go backwards. 
This would be a possibility, Ay=-y. It could be just halfway. It could be, not move at 
all. That's even a possibility. Ay=0y. Count that. Those y's or eigenvectors and the 
eigenvalue is just, from this point of view, the eigenvalue has come in second 
because it's, so y was a special vector that kept its direction. And then lambda is just 
the number, the two, the zero, the minus one, the 1/2 that tells you stretching, 
shrinking, reversing, whatever. That's the number. But y is the vector. And notice 



that if I knew y and I knew it was an eigenvector, then of course if I multiply by A, 
I'll learn the eigenvalue. And if I knew an eigenvalue, you'll see how I could find the 
eigenvector. Problem is you have to find them both. And they multiply each other. 
So we're not talking about linear equations anymore. Because one unknown is 
multiplying another. But we'll find a way to look to discover eigenvectors and 
eigenvalues. 

I said I would try to make clear what's the purpose. The purpose is that in this 
direction on this y line, line of multiples of yA is just acting like a number. A is some 
big n by n, 1,000 by 1,000 matrix. So a million numbers. But on this line if we find 
an eigenline you could say, an eigendirection in that direction, all the complications 
of A are gone. It's just acting like a number. So in particular we could solve 1,000 
differential equations with 1,000 unknown u's with this 1,000 by 1,000 matrix. We 
can find a solution and this is where the eigenvector eigenvalue are going to pay off. 
You recognize this. Matrix A is of size 1,000. And u is a vector of 1,000 unknowns. 
So that's a system of 1,000 equations. But if we have found an eigenvector and it's 
eigenvalue then the equation will, if it starts in that direction it'll stay in that 
direction and the matrix will just be acting like a number. And we know how to solve 
U'=lambda*u. That one by one scalar problem we know how to solve. The solution to 
that is e to the lambda*t. And of course it could have a constant do that. Don't 
forget that these equations are linear. If I multiply it, if I take 2e^(lambda*t), I have 
a two here and a two here and it's just as good. So I better allow that as well. A 
constant times e^(lambda*t)y. 

Notice this is a vector. It's a number times a number, the growth. So the lambda is 
now, for the differential equation, the lambda, this number lambda is crucial. It's 
telling us whether the solution grows, whether it decays, whether it oscillates. And 
we're just looking at this one normal mode, you could say normal mode for 
eigenvector y. We certainly have not found all possible solutions. If we have an 
eigenvector, we found that one. And there's other uses and then, let me think. Other 
uses, what? So let me write again the fundamental equation, Ay=lambda*y. So that 
was a differential equation. Going forward in time. 

Now if we go forward in steps we might multiply by A at every step. Tell me an 
eigenvector of A squared. I'm looking for a vector that doesn't change direction when 
I multiply twice by A. You're going to tell me it's y. y will work. If I multiply once by 
A I get lambda times y. When I multiply again by A I get lambda squared times y. 
You see eigenvalues are great for powers of a matrix, for differential equations. The 
nth power will just take the eigenvalue to the nth. The nth power of A will just have 
lambda to the nth there. 

You know, the pivots of a matrix are all messed up when I square it. I can't see 
what's happening with the pivots. The eigenvalues are a different way to look at a 
matrix. The pivots are critical numbers for steady-state problems. The eigenvalues 
are the critical numbers for moving problems, dynamic problems, things are 
oscillating or growing or decaying. And by the way, let's just recognize since this is 
the only thing that's changing in time, what would be the, I'll just go down here, 
e^(lambda*t). Let's just look and see. When would I have decay? Which you might 
want to call stability. A stable problem. What would be the condition on lambda to 
get for this to decay. Lambda less than zero. Now there's one little bit of bad news. 
Lambda could be complex. Lambda could be 3+4i. It can be a complex number, 
these eigenvalues even if A is real. You'll say, how'd that happen, let me see? I 
didn't think. Well, let me finish this thought. Suppose lambda was 3+4i. So I'm 



thinking about what would either the lambda*t do in that case? So this is small 
example. If I had lambda (3+4i)t. What does that do as time grows? It's going to 
grow and oscillate. 

And what decides the growth? The real part. So it's really the decay or growth is 
decided by the real part. The three, either the 3t, that would be a growth. Let me put 
growth. And that would be, of course, unstable. And that's a problem when I have a 
real part of lambda bigger than zero. And then if lambda has a zero real part, so it's 
pure oscillation, let me just take a case like that. So e^(4it). So that would be, 
oscillating, right? It's cos(4t) + i*sin(4t), it's just oscillating. 

So in this discussion we've seen growth and decay. Tell me that parallels because 
I'm always shooting for the parallels. What about the growth of A? What matrices, 
how can I recognize a matrix whose powers grow? How can I recognize a matrix 
whose powers go to zero? I'm asking you for powers here, over there for 
exponentials somehow. So here would be A to higher and higher powers goes to 
zero, the zero matrix. In other words, when I multiply, multiply, multiply by that 
matrix I get smaller and smaller and smaller matrices, zero in the limit. What do you 
think's the test on the lambda now? 

So what are the eigenvalues of A to the K? Let's see. If A had eigenvalues lambda, A 
squared will have eigenvalues lambda squared, A cubed will have eigenvalues 
lambda cubed, A to the thousandth will have eigenvalues lambda to the thousandth. 
And what's the test for that to be getting small? Lambda less than one. So the test 
for stability will be in the discrete case. It won't be the real part of lambda, it'll be 
the size of lambda less than one. And growth would be the size of lambda greater 
than one. And again, there'd be this borderline case when the eigenvalue has 
magnitude exactly one. So you're seeing here and also here the idea that we may 
have to deal with complex numbers here. We don't have to deal with the whole world 
of complex functions and everything but it's possible for complex numbers to come 
in. 

Well while I'm saying that, why don't I give an example where it would come in. This 
is going to be a real matrix with complex eigenvalues. Complex lambdas. It'll be an 
example. So I guess I'm looking for a matrix where y and Ay never come out in the 
same direction. For real y's I know, okay, here's a good matrix. Take the matrix that 
rotates every vector by 90 degrees. Or by theta. But let's say here's a matrix that 
rotates every vector by 90 degrees. I'm going to raise this board and hide it behind 
there in a minute. I just wanted to just to open up this thought that we will have to 
face complex numbers. If you know how to multiply two complex numbers and add 
them, you're ok. This isn't going to turn into a big deal. But let's just realize that 
suppose that matrix, if I put in a vector y and I multiply by that matrix, it'll turn it 
through 90 degrees. So y couldn't be an eigenvector. That's the point I'm trying to 
make. No real vector could be the eigenvector of a rotation matrix because every 
vector gets turned. So that's an example where you'd have to go to complex vectors. 
and I think if I tried the vector 1i, so I'm letting the square root of minus one into 
here, then I think it would come out. If I do that multiplication I get minus i. And I 
get one. And I think that this is, what is it? This is probably minus i times that. So 
this is minus i times the input. No big deal. That was like, you can forget that. It's 
just complex numbers can come in. 

Now let me come back to the main point about eigenvectors. Things can be complex. 
So the main point is how do we use them? And how many are there? Here's the key. 



A typical, good matrix which includes every symmetric matrix, so it includes all of 
our examples and more, if it's of size 1,000, it will have 1,000 different eigenvectors. 
And let me just say for our symmetric matrices those eigenvectors will all be real. 
They're great, the eigenvectors of symmetric matrices. 

Oh, let me find them for one particular symmetric matrix. Say this guy. So that's a 
matrix. two by two. How many eigenvectors am I now looking for? Two. You could 
say, how do I find them? Maybe with a two by two, I can even just wing it. We can 
come up with a vector that is an eigenvector. Actually that's what we're going to do 
here is we're going to guess the eigenvectors and then we're going to show that they 
really are eigenvectors and then we'll know the eigenvalues and it's fantastic. So like 
let's start here with the two by two case. Anybody spot an eigenvector? Is an 
eigenvector? Try . What comes out of ? Well that picks the first column, right? That's 
how I see multiplying by . That says take one of the first column. And is it an 
eigenvector? Yes, no? No. This vector is not in the same direction as that one. No 
good. 

Now can you tell me one that is? You're going to guess it. . try . Do the multiplication 
and what do you get? Right? If I input this vector y, what do I get out? Actually I get 
y itself. Right? The point is it didn't change direction, and it didn't even change 
length. So what's the eigenvalue for that? So I've got one eigenvalue now, one 
eigenvector. . And I've got the eigenvalue. So here are the vectors, the y's. And here 
are the lambdas. And I've got one of them and it's one, right? Would you like to 
guess the other one? I'm only looking for two because it's a two by two matrix. So 
let me erase here, hope that you'll come up with another one.  is certainly worth a 
try. Let's test it. If it's an eigenvector, then it should come out in the same direction. 
What do I get when I do that? So I do that multiplication. Three and I get three and 
minus three, so have we got an eigenvector? Yep. And what's, so if this was y, what 
is this vector? 3y. So there's the other eigenvector is  and the other eigenvalue is 
three. 

So we did it by spotting it here. MATLAB can't do it that way. It's got to figure it out. 
But we're ahead of MATLAB this time. So what do I notice? What do I notice about 
this matrix? It was symmetric. And what do I notice about the eigenvectors? If I 
show you those two vectors, and , what do you see there? They're orthogonal. is 
orthogonal to , perpendicular is the same as orthogonal. These are orthogonal, 
perpendicular. I can draw them, of course and see that. will go, if this is one, it'll go 
here. So that's . And will go there, it'll go down, this would be the other one. . So 
there's y_1. There's y_2. And they are perpendicular. But of course I don't draw 
pictures all the time. 

What's the test for two vectors being orthogonal? The dot product. The dot product. 
The inner product. y transpose, y_1 transpose * y_2. Do you prefer to write it as y_1 
with a dot, y_2? This is maybe better because it's matrix notation. And the point is 
orthogonal, the dot product is zero. So that's good. Very good, in fact. So here's a 
very important fact. Symmetric matrices have orthogonal eigenvectors. What I'm 
trying to say is eigenvectors and eigenvalues are like a new way to look at a matrix. 
A new way to see into it. And when the matrix is symmetric, what we see is 
perpendicular eigenvectors. 

And what comment do you have about the eigenvalues of this symmetric matrix? 
Remembering what was on the board for this anti-symmetric matrix. What was the 
point about that anti-symmetric matrix? It's eigenvalues were imaginary actually, an 



i there. Here is the opposite. What's the property of the eigenvalues for a symmetric 
matrix that you just guess? They're real. They're real. Symmetric matrices are great 
because they have real eigenvalues and they have perpendicular eigenvectors and 
actually, probably if a matrix has real eigenvalues and perpendicular eigenvectors, 
it's going to be symmetric. So symmetry is a great property and it shows up in a 
great way in this real eigenvalue, real lambdas, and orthogonal y's shows up 
perfectly in the eigenpicture. 

Here's a handy little check on the eigenvalues to see if we got it right. Course we 
did. That's one and three we can get. But let me just show you two useful checks if 
you haven't seen eigenvalues before. If I add the eigenvalues, what do I get? Four. 
And I compare that with adding down the diagonal of the matrix. Two and two, four. 
And that check always works. The sum of the eigenvalues matches the sum down 
the diagonal. So that's like, if you got all the eigenvalues but one, that would tell you 
the last one. Because the sum of the eigenvalues matches the sum down the 
diagonal. You have no clue where that comes from but it's true. 

And another useful fact. If I multiply the eigenvalues what do I get? Three? And now, 
where do you see a three over here? The determinant. 4-1=3. Can I just write those 
two facts with no idea of proof. The sum of the lambdas, I could write "sum" this is 
for any matrix, the sum of the lambdas is equal to the, it's called the trace of the 
matrix. The trace of the matrix is the sum down the diagonal. And the product of the 
lambdas, lambda_1 times lambda_2 is the determinant of the matrix. Or if I had ten 
eigenvalues, I would multiply all ten and I'd get the determinant. So that's some 
facts about eigenvalues. There's more, of course, in section 1.5 about how you would 
find eigenvalues and how you would use them. That's of course the key point, is how 
would we use them. 

Let me say something more about that, how to use eigenvalues. Suppose I have this 
system of 1,000 differential equations. Linear, constant coefficients, starts from 
some u(0). How do eigenvalues and eigenvectors help? Well, first I have to find 
them, that's the job. So suppose I find 1,000 eigenvalues and eigenvectors. A times 
eigenvector number i is eigenvalue number i times eigenvector number i. So these, 
y_1 to y_1,000, so y_1 to y_1,000 are the eigenvectors. And each one has its own 
eigenvalue, lambda_1 to lambda_1,000. And now if I did that work, sort of like, in 
advance, now I come to the differential equation. How could I use this? This is now 
going to be the most-- it's three steps to use it, three steps to use these to get the 
answer. Ready for step one. Step one is break u_0 into eigenvectors. Split, separate, 
write, express u(0) as a combination of eigenvectors. 

Now step two. What happens to each eigenvector? So this is where the differential 
equation starts from. This is the initial condition. 1,000 components of u at the start 
and it's separated into 1,000 eigenvector pieces. Now step two is watch each piece 
separately. So step two will be multiply say, c_1 by e^(lambda_1*t), by it's growth. 
This is following eigenvector number one. And in general, I would multiply every one 
of the c's by e to those guys. So what would I have now? This is one piece of the 
start. And that gives me one piece of the finish. So the finish is, the answer is to add 
up the 1,000 pieces. And if you're with me, you see what those 1,000 pieces are. 
Here's a piece, some multiple of the first eigenvector. Now if we only were working 
with that piece, we follow it in time by multiplying it by either the lambda_1 * t, and 
what do we have at a later time? c_1*e^(lambda_1*t)y_1. This piece has grown into 
that. And other pieces have grown into other things. And what about the last piece? 
So what is it that I have to add up? Tell me what to write here. c_1,000, however 



much of eigenvector 1,000 was in there, and then finally, never written left-handed 
before, e to the who? Lambda number 1,000, not 1,000 itself, but it's eigenvalue, 
1,000t. This is just splitting, this is constantly, constantly the method, the way to 
use eigenvalues and eigenvectors. Split the problem into the pieces that go, that are 
eigenvectors. Watch each piece, add up the pieces. That's why eigenvectors are so 
important. 

Yeah? Yes, right. Well, now, very good question. Let's see. Well, the first thing we 
have to know is that we do find 1,000 eigenvectors. And so my answer is going to be 
for symmetric matrices, everything always works. For symmetric matrices, if size is 
1,000, they have 1,000 eigenvectors, and next time we'll have a shot at some of 
these. What some of them are for these special matrices. So this method always 
works if I've got a full family of independent eigenvectors. If it's of size 1,000, I 
need, you're right, exactly right. To see that this was the questionable step. If I 
haven't got 1,000 eigenvectors, I'm not going to be able to take that step. And it 
happens. I am sad to report that some matrices haven't got enough eigenvectors. 
Some matrices, they collapse. This always happens in math, somehow. Two 
eigenvectors collapse into one and the matrix is defective, like it's a loser. 

So now you have to, of course, the equation still has a solution. So there has to be 
something there, but the pure eigenvector method is not going to make it on those 
special matrices. I could write down one but why should we give space to a loser? 
But what happens in that case? You might remember from differential equations 
when two of these roots, these are like roots, these lambdas are like roots that you 
found in solving a differential equation. When two of them come together, that's 
when the danger is. When I have a double eigenvalue, then there's a high risk that 
I've only got one eigenvector. And I'll just put in this little thing what the other, so 
the e^(lambda_1*t) is fine. But if that y_1 is like, if the lambda_1's in there twice, I 
need something new. And the new thing turns out to be t*e^(lambda* t). I don't 
know if anybody remembers. This was probably hammered back in differential 
equations that if you had repeated something or other then this, you didn't get pure 
e^(lambda*t)'s, you got also a t*e^(lambda*t). Anyway that's the answer. That if 
we're short eigenvectors, and it can happen, but it won't for our good matrices. 

Ok, so Monday I've got lots to do. Special eigenvalues and vectors and then positive 
definite. 


