
MIT OpenCourseWare 
http://ocw.mit.edu 

18.085 Computational Science and Engineering I, Fall 2008 

Please use the following citation format: 

Gilbert Strang, 18.085 Computational Science and Engineering I, Fall 
2008. (Massachusetts Institute of Technology: MIT OpenCourseWare). 
http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative 
Commons Attribution-Noncommercial-Share Alike. 

Note: Please use the actual date you accessed this material in your citation. 

For more information about citing these materials or our Terms of Use, visit: 
http://ocw.mit.edu/terms 

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms


MIT OpenCourseWare 
http://ocw.mit.edu 

18.085 Computational Science and Engineering I, Fall 2008 
Transcript – Lecture 27 

The following content is provided under a Creative Commons license. Your support 
will help MIT OpenCourseWare continue to offer high-quality educational resources 
for free. To make a donation, or to view additional materials from hundreds of MIT 
courses, visit MIT OpenCourseWare at ocw.mit.edu. 

PROFESSOR STRANG: So, let's see, you probably guessed on that quiz problem 
three, it wasn't what I meant. I get a zero for that problem. But you'll get probably 
good numbers, so that's an election gift if it comes out that way. So they're all in the 
hands of the TAs to be graded. We have a holiday Monday, I think. We come back to 
Fourier. Now, so we just have a concentrated shot at Fourier, just about eight or 
nine lectures in November. So stay with it and that'll be of course the subject of the 
third quiz. Which will have no mistakes. It'll be solved by the TAs in advance and 
we'll spot things. So, and if we have the quizzes to return to you by Wednesday that 
will be great. I hope so, but they have a big job. A little bit, looking far ahead at the 
end of Fourier the quiz is December 4th, I think that's a Thursday. And that's the end 
of the course. So December 4th, so we'll be ending the course a little bit early. 
Because I'll be in Hong Kong, to tell the truth. And and we've done a lot, and with 
the review sessions we're really doing well. So, that's the future. Fourier, today is an 
important day too, finite elements in 2-D, that's a major part of computational 
science and engineering. The finite element idea, the idea of using polynomials, you 
can find in some early papers by Courant, a mathematician in New York, and by a 
guy in China neat guy named Fung Kong But those papers were sort of, you could do 
it this way if you wanted. It was really the structural engineers in Berkeley and 
elsewhere who made it happen ten years later. And the whole idea has just 
blossomed. Continues to grow. So I had an early book, in the `70s, actually, about 
the mathematical underpinnings. The math basis for the finite element method. And 
many other finite element books. Professor Bathe you know, teaches a full of course 
on that. 

But, I think we can get the idea of finite elements here. We did them in 1-D, and 
now there's a MATLAB problem and I'd like to just describe that particular problem if 
I can, as an example. And, of course, you would use the code that's printed in the 
book, and that's available on the website just to download. But the problem is not on 
a square domain. It starts on a circle, so that the first lines of the code, the calling 
the MATLAB command square grid, are not applicable. So you have to create, then, a 
mesh. Well, I have a suggested mesh so I'll draw that, and then from that you want 
to make a list of all the node points. A list, P, of - so what the code needs is two lists. 
Well, let me draw a picture of, well, it's a circle. And I'm going to be solving Poisson's 
equation. The equation will be -u_xx-u_yy=4, in the circle. So it's Poisson but with a 
constant right hand side. That will mean that all the integrals of F times v, all the 
right hand side of our discrete equation will be, the integrals are all easy because we 
just have a constant there times the trial function. OK, and then on the boundary is 
going to be u=0. On the boundary. So it's a classic problem. And we can say what 
the solution is. So it's one with a known solution. I think it would be x squared. No, I 
guess one, one minus x squared minus y squared. This should all be on the .086 site. 

http://ocw.mit.edu
http:ocw.mit.edu


I just didn't have a chance to look this morning to be sure it got up. So you can 
watch, here. So that, I hope, does solve the problem. Two x derivatives give us a 
two, two y derivatives another two, so we get four. 

So we know the answer; the question is, and I'm interested in this question, for 
research reasons too, is what's the error when you go to a polygon? You go to a, 
these curved boundaries don't get correctly saved. You approximate them by straight 
lines. That would be the first idea. And with this, all this symmetry, let's keep the 
problem nice and use a regular polygon. So maybe I'll try to draw one with about 
eight sides, but, OK. So we impose u=0 at these nodes. So u is zero at those nodes, 
and then we have a mesh. So we want to create a mesh. OK, so with all the 
symmetry here, the natural idea would be to start with eight pieces, or M pieces if I 
have, this is a regular M side, let's say, and I'll take M to be eight in this picture. And 
I think we can work on just one triangle. By rotational symmetry, all those triangles 
are going to be the same. So I think our domain is really this one triangle here. 
That's where we're working. And in that triangle, I think we have zero boundary 
conditions. And across this edge I think we have natural boundary conditions. Slope 
zero, if I see the picture correctly. The rotational symmetry would mean that things 
are not changing. That every triangle is the same. So I think on these boundaries it's 
the Neumann condition, dU/dn=0. And I'm frankly not sure what to do at the origin, 
so I'll maybe just try both ways and see. 

OK, so there is a real problem. Of course, it's artificial in the sense that we know the 
answer. But it's a real open question of what does the error look like, from doing 
that. So that's the goal and let me just say the problem I'll ask you to do, and it 
probably is quite enough to be ready for next Friday, is to use piecewise linear 
elements. Which is what I'm going to do. What every discussion of finite elements 
will begin with, linear elements. Those pyramids that I spoke about it at the end of 
last time. So that's what I hope, but actually I would be highly interested if anybody 
got into the problem, to try quadratic elements. So I'll just say here, second-degree 
quadratic polynomials would be more accurate. Would be more accurate. So, in other 
words, this is a first type of finite element called P_1, for polynomials of degree one. 
These guys, I would call P_2, for polynomials of degree two. And I've mentioned 
here the possibility of using quads. Instead of triangles, if I had squares for example, 
the simplest element would be a Q_1. So these are, if I manage today to tell you 
about how to use P_1 and P_2 and Q_1, you're on your way. And for the 
requirements of this course, P_1 is the first point to understand. OK. While I'm 
speaking about codes and meshes, let me draw the mesh I proposed in the 
homework problem. So I thought OK, we just have to have a simple mesh here. So 
let me draw that line in. I know all these points, right? This is 0, here. And that 
point's on the circle. And so is this, that point might be, so what's the angle there? 
That angle is probably pi/8. The whole angle would be 2pi/8, and eight of them 
would go all the way around. So I think that angle is pi/8. 

And so this point would be cos(pi/8). sin(pi/8). We know where they are. But that's 
going to be what we have to list. We have to list where are the coordinates of all the 
mesh points. So let me describe the rest of the mesh points and then see what that 
list would look like. And once you've created the list, the code will take over. And 
then you plot the results and see what's going on. So let me suggest a mesh. It's 
pretty straightforward. I just divided this piece into N, this center thing into N, so I 
called that distance h. So Nh gets me out to here. Whatever that is, that's cos(pi/8), 
I guess, that's the x coordinate of that line. So those are mesh points and then let 
me keep drawing these. So these will be mesh points too, and these will be mesh 



points too. So at this point, I've got probably 12 or 13 mesh points. But I've got 
quads, right? Well, I've got a couple of triangles here that I'm not going to touch, 
those are fine. But these are quads and they could be used with the Q_1 element, 
but I'm thinking let's stay with triangles. So I just suggested to put in triangles, put 
in these diagonals, keeping symmetry. And so there's the mesh. There's the mesh. 

And then what does the code ask for? So it's got 13 mesh points. And the code, first 
of all it wants a list of the coordinates of all those mesh points. So that the code will, 
and I better number them, of course. So let me number them one, shall I number 
them the center guys first, one, two, three, four, five, and then up here six, seven, 
eight, nine,, now I don't know if this is a good numbering. Ten, 11, 12, 13. Why 
don't we, just to have some consistency within plans, why don't you, don't have to 
take N=4. I hope you'll take, what did I take N as four or five? Yeah, right. N is 4. 
But you'll want to try different N's. N=4 would be a good crude start to see what's 
going on, but then I hope you'll go higher and get better accuracy. And you can see 
how the accuracy improves, how you get closer to that as n gets bigger. OK, but got 
the nodes numbered. Oh, I better number the triangles. OK, how shall we number 
the triangles? Shall we do along the top, or this? I don't know. What do you want to 
do for the numbering of the triangles? Maybe run along the top, and then run along 
the bottom, because then it'll practically be a copy. So I didn't leave myself much 
space, but one, two, three, four, five, six, seven. Seven triangles along the top and 
seven along the bottom, so I have 14 triangles in this mesh. So it's a mesh with 14 
triangles and 13 nodes. And I know the positions of everyone, right? I know the x,y 
coordinates of every one. So what the code will want is a list of those coordinates. 
So a list, P, P will be a list of coordinates. The first guy will be of, the nodes so 13 
rows, three columns. So it's a little 13 by three matrix that tells you where all the 
nodes are. 

So the first one on that list would be (0,0). that's for node one. And the second one 
would be whatever the coordinates of that are, something zero. (h,0), I guess it is. 
The third one will be (2h,0), and so on, and then complete the list of 13 positions. So 
you are then told the code where all the nodes are. What else do you have to tell it? 
Not much. You now have to tell it about the triangles. So now for every, why do I 
say three columns? Maybe only two, is it? You see the point already. I've forgotten, 
maybe, yeah. I don't see why. Well for triangles, I'm going to need three, for nodes 
maybe it's only got two. Maybe it's 13 by two. I don't see why I need three. But, 
anyway. Then the other list is triangles. So this will be the list, t, and so it takes 
triangle number one. Which is right here. That very first triangle. And what does it 
have to tell us about triangle one? The three nodes. If it tells us the three node 
numbers, and this list, P, gave their positions, we've got it. So how many triangles 
did that I have? 14? So t will be 14 by three, and so the first guy will be just one, 
node number one, node number two, and node number six. That will tell us which is 
the first triangle. And the second triangle, I guess I've drawn from two. Two, seven 
to six, right? That's a very skinny triangle up there but it's the one that started at 
node two, went up to seven and back to six. 

So a list like that. And then the code will do the rest. I hope. Almost all the rest. The 
code will create the matrix K. It'll create the matrix K with, it'll be singular. Boundary 
conditions won't yet be in there. And then a final step after that K, or maybe we 
could call it K_0 is created, a final step will be to fix u. At least at these three points. 
So these three will be boundary nodes. And as I say, I'm not too sure about that 
one, I apologize. At those boundary nodes I'm going to take the values to be zero. 
So this is going to be zero along the whole edge, because if it's zero there, zero 



there, zero there and zero there, and if it's linear, it's zero. So the final, sort of, 
subroutine in the code, the final group of commands you want to impose, zeroes 
here, that should then make the matrix K invertible, and then you've got KU=F to 
solve. So what the code is doing is creating K and F. You see the overall picture? I 
jumped right into this particular mesh, particular problem, but now I really should 
back up to where it starts. This this is going to be the weak form of Laplace, Poisson, 
maybe I'll make a little space to put in Poisson's name too. You have a picture 
already of what this weak form is about, so now I'm really backing up to the start. I 
take the equation and I get its weak form. And remember that's in the continuous 
case, as it was in the quiz problem. The first step is the continuous weak form, and 
then the second step is choose test functions and, trial - I'm sorry, gosh, I'm in bad 
shape here. Because they're the same. This isn't my worst error, today. But those 
are trial functions, and these are test functions. OK, questions at this point, because 
I've, yeah, thank you. Good. Let's look at this picture. 

AUDIENCE: [INAUDIBLE] 

PROFESSOR STRANG: Because, we did. That's right. So because my question is what 
is the continuous problem, I would like to solve has u=0 on the polygon. So in a way 
you can forget the circle, where we know the answer now. We really are looking on 
the polygon, and I would like to know what's the solution like on that polygon. And 
then so there are two steps, the first step was start with a circle, we have the 
answer. Second step is go to a polygon, continuous problem, Poisson's equation in 
the polygon. How different is that from this? Because this will not satisfy the polygon 
boundary conditions. So that's the circle answer. Then the question is, what's the 
polygon answer. And I don't know that. You may say a regular polygon, you can't do 
that. I didn't think you can. It's amazing, but probably a triangle or a square. So if M 
is three or four, probably some formulas would be available. But I think once we get 
higher, I don't know the answer to the Dirichlet problem, to Poisson's equation on a 
polygon. On a regular polygon and that's what I would really like to know more 
about. And how do I find out more about it? By finite elements. With your help. 
Taking that polygon, breaking it into a mesh, looking only at one triangle just for 
simplicity, and getting u finite elements. Well, I should say u_p_1. That's the finite 
element solution using linear. I would really like to know u_p_2, the finite element 
solution which will be better. If I use quadratics. So now I get the fun of describing 
the linear elements, the quadratic elements, the quads. 

But did I answer that question OK? Yeah. So this is the problem I would like to know 
the answer to. If I have this equation, zero boundary conditions on a regular polygon 
with M sides, what's the answer? And it's going to be close to this, but it won't be the 
same. Because this does not vanish on the polygon edges. And I would like to 
compare the slopes, too. So the homework problem asked you not only to compare u 
circle with u_p_1, but also the slopes. The slopes here are easy, slopes here are easy 
because it's a bunch of flat functions. So the slopes are just constant in each 
triangle. OK, I'm guessing that the error gets smaller as you go in. I think that if you 
plot the error, it'll be largest out here and get small there. But remains to be seen. 
So I hope you enjoy - yeah, good. 

AUDIENCE: [INAUDIBLE] 

PROFESSOR STRANG: Rather than seven. 

AUDIENCE: [INAUDIBLE] 



PROFESSOR STRANG: No, the middle. There's nothing magic about any particular 
mesh. I just chose this mesh as pretty good, and actually, I'm imagining M could get 
pretty big. That would be interesting. M=8 would be interesting, M=16, M=1,024, 
now then I'd really get interested. OK, but so if M is 1,024, then this side would be 
very small. Right? And I just wanted more triangles. Actually, I would like more than 
I've got. I'd like, if M was really big, then probably N should be at least that big. So I 
should have a thousand this way, if this is just a tiny bit. I just want little tiny h, and 
then, yeah. Actually, that might not be too bad. If m anM N were roughly 
comparable, then that length would be roughly comparable to these lengths. And the 
triangles would be pretty good shape. And that's what you're looking for. I think 
there's a lot of experiments to be done here. So, I'm thinking then of M and N. Here 
I took N to be just four. When M was eight. That's fine. But if you keep M and N 
roughly the same size, then you've got triangles that are not too long and skinny. I'll 
tell you when you might want. So generally you want nice shaped triangles. You 
don't want angles very small or very large, usually. But there would be, anybody in 
Course 16 can imagine that if I am computing the flow field past a wing, that long, 
thin triangles in the direction of the wing are natural. I mean, somehow a problem 
like true aerodynamics is by no means isotropic. I mean, the direction of the wing is 
kind of critical to whether the plane flies, right? So don't make the wing vertical. And 
if you want accuracy, then you have long, thin triangles in the direction of the flow. 

But here we're not doing a flow problem. We haven't got shocks, or trailing edges, 
and other horrible stuff that makes planes fly. We just got Poisson's equation. OK. 
Thanks for those good questions, another one. 

AUDIENCE: [INAUDIBLE] 

PROFESSOR STRANG: What would the dimension look like? Ah, would you like me to 
show you something about quadratics? Yeah. Shall I jump into quadratics, it's kind of 
fun. Quadratics, so let me just do, so I'll come back to the weak form, right it's 
totally, oh I'll do it now. It's so simple I don't want to forget it. The weak form, so I 
write the equation down, -u_xx-u_yy=f. This is the continuous weak form equal 
f(x,y), OK? So that's the strong form. And I've made it the Laplace in here to keep it 
simple, on any right hand side. OK, how do I get to the weak form? Just remind me, 
I multiply both sides by any test function v(x,y). Multiply by v(x,y), and then what 
do I do? I integrate over the whole region. So that's the weak form, dxdy, this is for 
all v, all v(x,y), all, I'll say all admissible v(x,y). So that's the weak form. If this 
holds for all this great family of v's, the idea behind it is, that if this holds for all 
these trial functions, test functions, v(x,y), the only way that can happen is for this 
to actually equal that. That's a fundamental lemma in this part of math, and of 
course it has to be spelled out more than I'm doing in words. But the idea is that if 
these hold for such a large class of v(x,y), then the only way that can happen is for 
the strong form to hold. For this to actually match this. OK, so that's the start. But 
then what's the next step in the weak form? I I like the right hand side but I'm not 
so crazy about the left hand side. I'm not crazy about it because this says second 
derivatives of u, and my little roof functions, pyramid functions, haven't got second 
derivatives. So I would be dead in the water without doing the natural step that 
makes everything beautiful, which is? Integration by parts. 

Integrate by parts. Move derivatives of of u, on to v. One derivative onto v, off of u, 
so then u and v each have one derivative. I can use my piecewise linear, piecewise 
quadratics, all my finite elements are going to go fine. So I integrate by parts. So 



integrate by parts, and what is that mean in 2-D? Of course I have a double integral 
here. So integrate by parts, that mean you the Green's formula. That was the key 
point of this Green, or Gauss-Green's, formula. Can I do it first in, this is -div(grad 
u), times vdxdy, we can write out all the terms. We can use vector notation. I could 
use that nabla, that upside down triangle notation, or whatever. But maybe good to 
see it a few different ways. So what's the point? When I integrate by parts, that 
minus disappears to a plus, I have a double integral then, and these derivatives 
move off of, I'm taking one derivative off of here, the divergence moves over there, 
but when the divergence moves onto v it becomes? The transpose. It becomes 
gradient. And so this is gradient view, gradient of v. dxdy, plus boundary terms. The 
integral of, what is, let's see. What do I have in this integral, I have grad u dot n, 
times v around the boundary. And that's with my boundary conditions that's going to 
be gone, so I can come back to that. 

Now, you all looked a little uncertain when I wrote Green's formula this way. For this 
problem I can write it more easily. This is my left side. I want to write the answer, I 
just want to write this weak form in a much simpler form. So let say, what have I got 
here. Well, all I've got is one derivative is moving off of u and on to v. And the minus 
sign is disappearing, so I have du/dx times dv/dx. Right? One off of u, onto v. The 
other term, one y derivative, moving off of this and onto v. Minus sign again going to 
a plus. du/dy, dv/dy. That's the integral. That's it, that's cool. Easy to do. And on the 
right hand side of course I have no change. The integral of f(x,y)*v(x,y)*dy. Now, 
that's the weak form, dx/dy. Here it is, weak form. That's pretty nice. Beautifully 
symmetric, though the matrix that comes up when we plug in finite specific trial 
functions and test functions is going to be a symmetric matrix K. And the integrals of 
first derivatives, so as long as our functions, our trial functions and test functions are 
continuous, that is, they shouldn't jump. If the trial functions or test functions jump, 
then if I have a jump, then the derivative would be a delta. I'd have another delta 
here, I'd have an integral delta, a delta times delta, and I don't want that. That's 
infinite. Those discontinuous elements would not be conforming, and that's a whole 
new world of discontinuous Galerkin. I'd have to impose penalty stuff, and Professor 
Peraire I mentioned. And others, Professor Darmofal in aero are experts on this. 
We're doing continuous form. CG. Our piecewise linear, piecewise quadratic, they'll 
be continuous. All I have to do is these derivatives. Integrate those things and that's 
what the code will do. 

OK, I've got to the weak form. That's the weak form. Now comes the finite element 
idea. So there is our weak form, now ready for the finite element idea. OK, so what 
was that idea? That's the continuous problem. Now, the finite element idea is, plug in 
U as a combination. Let me write out the terms. You know what's coming here. If I'm 
using finite elements, I'm going to choose nice polynomials, phi, say, N of them. 
That would be like, one for every node, so I would have 13 functions here. I'm going 
to choose the v's to be the same as the phis. And then, I'm working then in 13 
dimensions instead of infinite dimensions. So what do I do? For this limited 
subspace, this finite element subspace, this piecewise polynomial, piecewise linear 
subspace, I plug that into the weak form and I test it against 13 V's, which are phis. 
So I plug that in, so now what is K? Now let me just say, so I now have the integral 
of, yeah I guess I'd better plug it in. K_ij would then be the integral. I'm just copying 
the weak form in. Of dU/dx, no, sorry I'd better just plug it in first. dU/dx*dV/dx plus 
dU/dy*dV/dy, those are the integrals I have to do. And on the right hand side I have 
to do the fV. OK, plug that in. That's the integral over the whole domain. When I 
plug it in this U is a combination of known functions and the V's will be the same 



guys. So what am I going to get here? It's just as in 1-D. So no new ideas entering 
here. The new idea's going to enter when I construct these phis. 

Let me just say, though, one thing. In 1-D, we've pretty much had a choice of, when 
it was one dimension. Just remember that. In one dimension, when I had these hat 
functions, when I had these guys, integrated against these guys, I pretty much had 
a choice of did I want to think about integrating that hat function against that one. 
Or actually it was their derivatives. It was the integral of U, yeah. Of phi, what I 
needed was all the integrals of phi_i', phi_j'. Those are what I needed, these go into 
K. Into the matrix K. In fact, that's what equals K_ij, the integral of phi prime. In 1-
D. OK. Now, what I was going to say, I could do it this way if I wanted. But you 
remember the other way to do it? Was elements at a time. So this was one method 
here. That found the entries of K separately, one by one. The other way was take the 
elements, one by one. So the other way was take an element like this element. It's 
got two functions, two trial functions are involved there. There's a little two by two, 
so this is four. Two by two element matrices. K equals. And the quiz recalled that 
part. That approach. So what I want to say is that's the right way to do it in two 
dimensions. A triangle at a time. That's the way the code will do it. It creates these 
little element matrices, and then it stamps them into the big matrix K. Alright. So I 
want to do this integral one triangle at a time. Is the good way. OK, and that's what 
the code will do. Actually, I think that the best way to learn these steps is just to 
read the lines of the code. You can read them in the book, Page 303 or something. 
And you'll see it just doing all the steps that need to be done. One triangle at a time. 

So, now. Now comes the fun. I get to answer what do these piecewise linear 
elements look like. What do the quadratic elements look like. What do the Q_1 quad 
elements look like? This was the golden age of finite elements, when people invented 
these ways to create piecewise polynomials. And it continues. People are still 
inventing, I had a email this week, somebody says I've got spectral elements. People 
are going higher and higher degrees. You, know sixth degree, eighth degree. In 
order to get more accuracy. OK, let's start with P_1. How do I describe a P_1 
element inside a triangle? So in a triangle, the unknowns will be the value, this has a 
height U_1, this has a height U_2, and a height U_3 at those nodes. Inside the 
triangle, the function U is linear. a+bx+cy. Then, you see that if I know these three 
values, then I know these three numbers. And vice versa. There's a three by three 
matrix, right? There has to be a three by - any time you see pictures like this, this is 
like the good part of 18.085 is to realize that if I have three numbers here, three 
values and I've got three coefficients, that there's some three by three matrix that 
connects them that you're going to need. That's like a meta-message of this course. 
Is, you've got to translate between the node values and the coefficients. Because the 
node values are the unknowns, right? These are the guys that are multiplying the 
pyramid function, this is multiplying a pyramid function with height one. At that 
point, going down to zero, so this one will be a pyramid function of height U_2 times 
one, going down to zero. And U_3. So we've got a flat function in here. And it looks 
exactly like that. OK? 

So what do I want to say? When we know the positions of these three nodes from 
our list, P, right? These were the crucial things we did. The positions of all the nodes, 
we know where they are. Then there has to be a three by three matrix that will now 
connect to the coefficients. Why do we want the coefficients? Because those are what 
we do when we integrate. The coefficients are what we need, we need to integrate 
dU/dx, dU/dy, dU/dz. Sorry, dU/dx, dU/dy. Are you visualizing this overall solution 
capital U, yeah. So what the overall solution capital U, you should visualize with a 



combination of all the little u's, is zero here and then it's going to go up and these 
triangles and bend around and, I don't know, maybe down again. Or maybe, no, 
maybe it keeps going up. This is probably the largest value, because it's the largest 
value and the correct solution. So is this is probably going to be the highest point of 
this. What's the Forbidden City, right? In China, is in Beijing is like, or a single, do 
pagodas have flat? No. We we will meet pagoda functions. But this would be just an 
ordinary western roof, I guess. Just flat pieces. Yeah. OK, see, you've got to see the 
whole thing and then you look at each piece. Each piece looks like that, and the 
integrals are doable. 

OK, so while I'm going here, I want to do quadratics. You'll get the idea right away. 
So, same triangle, now I'm going to have quadratics. So I'm now going to have, so 
this won't be the arrow, this arrow will now go this way. I'm going to have dx 
squared, exy, and f y squared. So now how many coefficients have I got to 
determine a quadratic? Six, right? a, b, c, d, e, f. How many nodes do I need? Six. 
Where are they? Well, the natural positions are those guys in the mid-point. So now, 
those are all nodes now. Some nodes are at vertices of triangles, some nodes are at 
midpoint. But remember, we've got other triangles hooking on here, many other 
triangles, all with their own six nodes. Well, not their own, because they share. 
That's a big point. So there's a grid of triangles, with nodes for quadratic. And we've 
got one, two, three, four, five, six, seven, eight, nine, ten, 11, 12, 13, 14, 15, 16 
nodes, I think. And within each triangle, this is what we've got. So there's a six by 
six matrix for each triangle. A six by six matrix which will connect the values U_1, 
U_2, U_3, U_4, U_5, U_6 for this triangle. Connect those six heights with these six 
numbers. And what will the roof look like within that triangle? Well, sort of curved. A 
parabola, right? A parabola somehow in 2-D, it'll look like this, yeah. Yeah. And 
here's the key question. Will that roof, that curvy roof, fit the one over there? 
Because if it didn't fit, we're in trouble. This derivative would have a delta function, 
and we've got delta functions, and integral squaring them would give infinite. 

So here's the question. Why does this roof, using these six points, fit on to the roof 
that uses U_7, U_8, U_9, and U_3 U_4 and U_6? Why do those two roofs fit 
together? This one piecewise polynomials? Of course, the slope will change. But the 
roof won't have a gap. Water won't go through it. Why's that? Do you see why? 
Because what do they share, what do those two curvy roofs share? They share a 
side. They share the same values along the side. And are those three values that are 
shared along the side sufficient to make it match all along the side? Yes. That's the 
important question. Finite elements lives or dies on that question. The answer is yes, 
because along that side, if I just focus on that side, where these three values are 
shared on both sides, by the triangle on both sides. Along that edge, what kind of a 
function have I got? It's second degree. This is whatever, when I restrict this to just 
run along a line, it's a parabola. And the parabola is determined by those three 
values. So having it right at three points means I have it right the whole way. Yeah. 
So there you see what quadratic elements would look like, and you could extend the 
code in the book and on the CSE site to work for quadratic elements. And you want 
to just guess what cubic elements could look like? I'm sorry, we've run five minutes 
over, but maybe finite elements is worth it. So if I had cubic elements, any idea how 
many? So I'm now going up to, I'm adding g x cubed, h, i, j, any idea how many 
coefficients I now have? Four new ones plus these six is ten. I need ten nodes. 
Where I am I going to put ten nodes in this triangle? I want to put them, I'd like to 
have some on the edges. Because the edges help me make triangles match each 
other. They'll just be like bowling balls. So here's six, oops, that wouldn't be 
believable. Is that right? Four, three, two, and one. Yeah. Yeah. OK. 



So, now I've got a bubble node inside and I've got four nodes of vertices and two 
points, at two 1/3 points, and that will then match the triangle next to it. Because 
four points determine a cubic. There you go, I hope you have fun, I hope you have a 
great holiday. I'll see you Wednesday for Fourier and always open for questions on 
the MATLAB. 


