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PROFESSOR STRANG: Shall we just start on this review session? So, any questions 
on anything from Chapter one, anything from those first seven lectures is very, very 
welcome. So this morning finished the serious part of what we'll do in the chapter 
with positive definite matrices. And we'll see a lot of those fortunately. They're the 
best. So questions about, I hope you look in the book at other problems in the 
problem sets as well as the ones I suggest. And then I can, anyway. Ready for any 
questions. Ok. Which problem is it? In section? Section 1.6, problem 27, what have I 
done there? Oh, ok, that's good. So it's about positive definite matrices. May I just 
put on the board what the central question is? Just put these matrices up. We're 
given that H and K are positive definite. And then the question is, what about these 
block matrices. Do I call them M and N? One is the block matrix that looks like that. 
And another one is the block matrix that looks like this. So those are both 
symmetric. We're allowed to ask, are they positive definite or negative definite 
because they passed the first requirement. They're symmetric. We can discuss them. 
Because of course H and K each were symmetric. The transpose of this would bring K 
transpose down here, but that's K, so all good. 

So the question now. Of these guys to those guys I guess, yes. Good question. So 
this guy has, let's take eigenvalues first. So this guy has some eigenvalues, say 
lambda_1 to lambda_n. And this guy, we'll suppose they're the same size, so they 
don't have to be. Maybe I shouldn't, but I will. This has some other eigenvalues, 
maybe e_1 to e_n for eigenvalue. And then the question is, okay, what about the 
eigenvalues of that combination? And what about this? So it's a good question, I 
think for all of us to practice what just came up in the lecture. The idea of block 
matrices. So looking here at eigenvalues I could also look at pivots. 

Pivots would be interesting to look at, too. Maybe I'll start with pivots. Can I? Did 
you think? What would be the pivots of M? If I start elimination on M what will I see 
for pivots? Well, I start up in the usual left-hand corner and work down. So what am 
I going to see first? I'm going to see the pivots of H. It won't even know, by the time 
I had halfway there, it won't even have seen K. And then, that'll be fine. And then 
this will be, what's going to happen? This is all zeroes. So never get touched, right? 
So when I get down to the second half I see all zeroes here. K is still going to be 
sitting right there. Nothing happened. Because when I did these eliminations nothing 
changed with K. So the rest of the pivots will be the pivots of K. Good. 

Now, we might hope for the same thing with eigenvalues and probably that's going 
to happen. This is like a diagonal matrix. And actually, what words would I use? 
Block diagonal. I'd call that matrix block diagonal. And those are very nice matrices. 
That tells us that the big matrix, for all practical purposes, is breaking up into these 
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smaller blocks. Actually MATLAB will search for a way to reorder the rows and 
columns to get that in case it's possible. So here it's in front of us. 

Let's see if we can figure out. That lambda_1 I believe is also an eigenvalue of M. So 
it was an eigenvalue of H. So that this, the fact that it has that eigenvalue lambda_1 
means what? That H times this times some vector y is lambda_1*y, right? If that's 
an eigenvalue it's got an eigenvector and let's call it y. Now this is a good question. I 
believe this block matrix also has eigenvalue lambda_1 and what's its eigenvector? 
What could I multiply M by to get lambda_1 times the same thing? Can you see 
what? Of course I'm thinking that y is going to help but it's grown now. So what 
would be the eigenvector here? When I multiply by M it'll just come out right with 
the same eigenvalue? y_1, or y rather, and then? And then zero, good. y_0. 

Because if I multiply, can I put in what M really is? The H and K. H there, K there. 
When I do that multiplication I get lambda_1*y. When I do this multiplication, see 
I've just, that's a zero block, zero, so I got a zero. Perfect. So the eigenvectors of H 
just sit with a zero in the K part and produce an eigenvector of the block matrix with 
the same lambda_1. So you can see then, we get the whole picture. The eigenvalues 
are just sitting there and the eigenvectors are there. 

Now maybe you got all that and wanted-- well I haven't said anything about N, 
Sorry. Everybody thinks more about N. So what's the thing with N? What would you 
say about N? If you look at that matrix, suppose I don't even tell you it's positive 
definite at first, would you say that looks like a invertible or singular matrix? 
Everybody's going to say singular. And why would you say that's singular? Well, the 
determinant of a block matrix, this morning I said do whatever you like with block 
matrices. But I have to admit that if I had a bunch of general blocks, if I had to take 
the determinant of that, and of course everybody's remembering Professor Strang 
doesn't like determinants, if I had to take the determinant, I'd have to do the whole 
thing. The separate determinants would not tell me the story, usually. So 
determinants are a bit tricky. But up here the determinant will come out zero. 

I guess what I would hope your internal test for a singular matrix is, are the columns 
independent? And then the matrix is invertible. Or are they dependent? Do you have 
some columns that are in the same direction as other columns, same direction as 
combinations of other columns? If you look at the columns of that, say column one, 
so column one is the first column of K repeated. What do you think about the 
columns of that matrix, that block matrix N? Do you see that same column showing 
up again? Yeah. That very same column, which is the first column of K, again twice, 
is going to show up right there, first column of K again. So this matrix has two 
identical columns. No way it could be invertible. 

And in fact, you can tell me what vector, I'm always saying are the columns 
independent? Here, no, they're dependent. And then you can tell me an x. So this is 
my block matrix N. I want to know an x so that the result is zero. That's really my 
same indication. We found two identical columns. What would be the x? Well, you 
have to tell me more than one, minus one because I've got a big x there. Yeah I've 
gotta make it big enough, but essentially it's the one, minus one, thanks. And 
enough zeroes in there and enough zeroes in there. 

So the fact that that vector gets taken to zero is the same thing as saying that one 
of this column minus one of this column gives zero. In other words, the columns are 
the same. And of course, by doing this we're seeing the one and minus one could 



have gone into position two there, position three. So we've got a whole bunch of 
vectors. This matrix N, this [K, K; K, K] has got a whole lot of vectors that it takes to 
zero. What I would say it has a large null space. A large space of vectors that it 
takes to zero. So that's a really useful exercise. I'm delighted you asked it. Now I'm 
ready for more. 

Could do. Exactly, row reduction. I should look to see what would happen in 
elimination. Well, elimination would go swimmingly along for the first part because 
it's only looking here. But then what would I have after the first half of elimination? 
Well I'd have I suppose whatever that K changed to, elimination. What should we call 
it? U or something? When I did these row steps that matrix turned into this upper 
triangular matrix. And maybe you can tell me what will have happened at the same 
time to the rest? What will I see sitting here if I just do ordinary elimination and I'm 
just looking there and using the pivots and so on, I'll see? It'll be U because 
whenever I do on the left side I'm doing to the whole row. And now, the main point 
is, what will I see? Now elimination, keep going, keep going. Do elimination to clear 
out this column, this whole bunch, right? Elimination. 

And now what am I going to see in that corner? All zeroes, right. So that's telling me 
that the matrix has just got half of the eigenvalues positive, half of the pivots are 
positive. The second half all zeroes. So I guess, here I've found an eigenvector with 
what eigenvalue? That's looking like an eigenvector to me if we're thinking 
eigenvectors. And what's the eigenvalue that goes with it? Zero. Because Nx is 0x. 
You can either think of it as Nx=0 if you're thinking about systems of equations. Or 
Nx=0x if you're thinking that that guy is an eigenvector with eigenvalues here. 

So I'm pretty happy. I mean many of you will have spotted this. Probably perhaps 
all. But I'm happy that's an example that just shows how you have to think big with 
block matrices I guess. Good. Ok on that? What else, thanks. 

That's true. And that's really all I've done so far is those four examples. I think that 
language of fixed-fixed and fixed-free really comes, I mean I used it early about 
those four matrices, but it's really going to show up at the next lecture, Friday, when 
I have a line of springs and the matrices that come out of that. So Friday we'll finally 
be on those first four. A fifth matrix will appear in this course finally. Of course, it's 
going to be related to the first ones, naturally but we'll move to, we'll see something 
new and then we'll see the fixed-free idea again for those. So if that can wait until 
Friday, you'll see some different ones. Good. Questions, thoughts. You can ask about 
anything. 

Maybe I can ask. Any thoughts about the pace of the course? This is sort of a heavy 
dose of linear algebra, right? Of course, the answer maybe depends on how much 
you had seen before. So those who haven't seen very much linear algebra at all 
really got quite a bit quickly here. Because many courses on linear algebra never 
reach this key idea of positive definiteness that ties it all together. So you've seen 
quite a bit, really. Of course, we've concentrated on symmetric matrices and there's 
a whole garden or forest or zoo of matrices of different types. 

So what matrices have we seen? Symmetric matrices and then their eigenvectors 
were orthogonal and we could say orthonormal. So that gave us, I don't know if you 
remember this part, which when we wrote it down I said, big deal. That's very 
important. That's this principal axis theorem. These Q's, what kind of a matrix is Q? 
It's the eigenvector matrix. And for symmetric matrix, so this is the eigenvector 



matrix. And what do we know about it? In the special case of symmetric K? What do 
we know especially about the eigenvectors then? They're orthogonal. We can make 
them orthonormal. So this will be an orthogonal matrix. And that was a matrix with 
Q transpose was the same as Q inverse. Normally we would see the inverse there, 
but for these we can put the transpose. Here's one type of matrix, symmetric, very 
important. Here's another type of matrix, orthogonal matrices. And of course, many, 
many other varieties. Well here we have a very nice matrix, so that matrix is 
diagonal. Right, that's just the eigenvalues, so that's a diagonal matrix. 

And what do we know, if K is positive definite, let's just, this was for any symmetric 
one. So what's special if K is positive definite? Somehow the positive definiteness 
should show up here. And where does it show? Positive eigenvalues, exactly. The Q 
could be any, any Q would be fine. But we would see positive eigenvalues. 

Oh, here's a little point about eigenvalues. Suppose I have my matrix K. And it's got 
some eigenvalues. Now let me add four times the identity to it. What are the 
eigenvalues now? What are the eigenvectors now? What's changed and how and 
what hasn't changed? Because that's a pretty easy, the identity matrix is always the 
easy one for us to know what's happening. So what is happening to the eigenvalues 
now? If K had these eigenvalues lambda, what are the eigenvalues of K+4I? You 
add? You add four, yeah. The eigenvalues of this are the eigenvalues of K+4. That is 
just like shifting the matrix, you could think of it is adding four along the diagonal 
will add four. 

And the eigenvectors would be exactly the same ones. I would have Kx would agree 
with lambda*S. And 4Ix would agree with 4x. So that proves it. Good to see what 
you can do, the limited number of things that you're allowed to do without changing 
the eigenvectors, and therefore you can spot the eigenvalues right away. The limited 
things you can invert, you can shift like this, you could square it, cube it, take 
powers, things like that. 

I'm going to look to you now for giving me a lead on something that is interesting or 
not. Yes, thanks. Go ahead. Oh, I see okay, yes. I see. Alright. So that's page 64 of 
the book. Well, so that's a problem that physicists love. I don't know how much I can 
say about it here, to tell the truth. Just to mention. Do they use a minus sign? 
Probably they do. So their equation is minus the second derivative of u plus (x 
squared)*u and they are interested in the eigenvalues equal lambda*u. The case 
that we've done in class was without this (x squared)*u term, right? The absolutely 
most important case is the second derivative of u equal lambda*u. The eigenvalues 
were, or what were the eigenvectors in that case? What were the eigenvectors of the 
second derivative before there was any (x squared)*u and E potential showing up? 

They were just sines and cosines, right? Sines and cosines have the property that if 
you take two derivatives you get them back with some factor lambda. Now let me 
just look at that problem without saying much about it. First of all, the first thing I 
want to know is have I got a linear problem here? Have I got a linear equation? 
Because that's where I talk about eigenvalues. So in the matrix case, I'd say I have 
a matrix. K times an eigenvector. That matrix represents something linear. It's just, 
all the rules of addition work here. Here it is linear. It is linear. 

What I'm trying to say is, I just call that a variable coefficient and that's what we're 
going to see in Chapter two. The material or something could lead to some 
dependence on x. But u is still there, just linearly. In other words, this is a perfectly 



ok linear operator and am I imagining that it's positive definite? Let's see. This part 
with the minus sign was positive definite, right? Well, at least semi-definite. So let 
me just remember the most important case. If I look at this equation, d second u/dx 
squared equals lambda*u. So that's the eigenvalue, eigenfunction problem for our 
good friend. What do I say about the eigenvalues now? What can you tell me about 
the eigenvalues of that? Mostly positive. Because they were sort of omega squares. 
But I mean zero could be an eigenvalue, right? What would the eigenfunction be for 
lambda equal zero? If I wanted to get zero here, if I wanted a zero on the right side, 
what functions u could give me zero? Constant function. Yeah, the constant function 
is certainly there as a possibility. 

But anyway, I would say this is positive semi-definite at least. And this part? How do 
I think about that as a big matrix? I think of it sort of like a big matrix with x 
squared running down the diagonal. With a matrix, you could say walking down the 
diagonal because it's n steps. For differential equations, maybe running is the right 
word. Because it doesn't jump, it's just bzzz all the way from zero squared to 
whatever. Anyway, that would correspond to a diagonal matrix, but not constant 
diagonal. Diagonal, but not constant diagonal. Because this x squared number is 
changing. 

It's like a spring, it's like a bunch of springs in which the first spring maybe has a 
spring constant of one. And then we have a tighter spring and then a very tight 
spring and so on, more and more, higher and higher constants there. Well, I'm just 
speaking very roughly here. Because variable coefficient, variable material 
properties, springs of different elasticities, we're ready to move to that. Our 
problems up to now, the springs were all the same. The bar, if it was a bar, was 
uniform. And now this would be a step forward. But now, of course, this specific 
problem just happens to have a solution that physicists love. It has a meaning to 
physicists, not to me. And the eigenfunctions have a meaning and they're famous 
functions. It's just glorious. So you could say that's the special problem, the way we 
had four special matrices in 18.085, that would be a similar special problem in 
quantum mechanics. 

Let's turn to something entirely different. Questions about any topic. Or I can ask 
some and you can take this, maybe that's one way to review. Go ahead. Thanks. 
Number 20 of 1.6. 1.6 is a section, oh, no. That's positive definite notes so I'm okay 
with that. I see that I did ask you a question on the homework from 1.7 which I may 
not get to cover in lecture, but give it a shot anyway. So what's 20? Oh, ok, that's 
good. Without multiplying out the matrix. So it's this Q*lambda*Q transpose. So I'm 
telling you in that question what Q, lambda, and Q transpose are. The Q is this 
[cosine, minus sine; sine, cosine]. The lambda is two and five, I think, in that 
question. And the Q transpose of course is [cosine, sine; minus sine, cosine]. And if 
I've told you that those are the numbers then you could multiply those together to 
get K. But you can tell me, this is like K exposed. The matrix is like, we're told more 
than we would know. If I multiply it all together, I wouldn't see that the eigenvectors 
are these guys, that the eigenvalues are these guys. 

So what, without looking to see, what are the eigenvalues of this matrix K if we 
multiplied it all together? What would the eigenvalues actually be? Two and five, 
right, because we built it up that way. What would the determinant be? Now what do 
we know about determinants? It would be ten is the right answer. What's the right 
way to see that? Well, the determinant is always the product of the eigenvalues, isn't 
it? These guys have determinant ten anyway. And if I hadn't normalized, so this had 



some bigger determinant, this would have some smaller determinant. Their inverses, 
their determinants will give me the 1 and there's the ten. 

What else could I ask about or did I ask about for that? The eigenvectors, ok. The 
eigenvectors of the matrix, what are they? They're these columns that are sitting 
here for us, they're those two columns, right. And would you like to just check that if 
the, I believe that column is an eigenvector. And which, do you think two or five is 
it's eigenvalue? That goes with this first column. Everybody's going to say two and 
that's right. And do you want me to just take that matrix times this proposed 
eigenvector and just see if it's going to work? Suppose I just do all and just see, sure 
enough this will be an eigenvector. So what do I have at this point? Can you do this 
times this first? What do I get? c squared plus s squared is one. And -cs plus cs is 
zero. So at that point I have . Now comes this matrix. So what do I have after that 
matrix speaks up? . And now I take two times this and what do I get? Or that matrix 
times the . How do you multiply a matrix times that vector. Here's the good way to 
think of it. It's two times the first column. And zero times the second. So the net 
result of the whole deal was two times that first column. Which is exactly saying that 
this is an eigenvector. When I did all that it came back again. Scaled by two. So 
that's a good example. 

And then, is the matrix positive definite? That connects to today's lecture. What test 
would you use to show that the matrix is positive definite? The eigenvalues, yeah. 
The eigenvalues are sitting there. Two and five, both positive. If I changed one of 
those signs, then it would no longer be positive definite. It would still be symmetric, 
I'd still have the eigenvectors, but then eigenvalue would have jumped to minus five. 

I think this sort of helps out. I guess I hope that as I'm doing these things, you're 
ahead of me or with me in the calculation and you just have to do a bunch of these 
to get confidence that you've got the right thing. Ok, yes? 1.6, 24. Is that also a 
homework problem? Alright, but you guys are reading the rest of the book, right? 
Not only the homework questions. Ah. Oh, dear. 24, that's a very good question. 
About this, yeah. Right. It's a good question. And if today's lecture had been, well it 
ran a little late. But if we ran another 20 minutes late, I could have done this. I'll just 
say what's in that problem. And then we'll see it again. So what's in that question? 
Let me write down what it is. 

So I have a positive definite matrix K, right? And then I've got its energy. I'm using 
u rather than x, so let's use u. So my u transpose Ku, or like x transpose Kx today. 
That is this bowl-shaped figure, right? If I graph this on the u_1, u_2 maybe up to 
u_n, all in the base. And now I have the picture. So I'm in n+1 dimensions. The 
other dimension is this one. Then that's the one where I might get this bowl-shaped 
guy. And I've called that energy. In many, many physical problems there is a factor 
of 1/2. And it's going to be nice to have that factor of 1/2. So that won't change 
anything, just half as big. 

So what is the minimum value of that energy? And what is the minimum value of 
this, if I said minimize that, you could do it right away. It'd be a zero. Now I'm going 
to introduce a linear term. This was a quadratic term and it had u squareds in it. So 
the linear term is going to be u transpose f is the shorthand for it. And of course, we 
all know that that stands for u_1*f_1, u_2 all minus, u_2*f_2 and so on. However 
many dimensions I'm in. You can imagine I'm in two dimensions. So it's -u_1*f_1 -
u_2*f_2. So what I'm saying is that minimizing just this was like, too easy, right? 



The answer was zero. Nobody's interested in that for very long. But now it is much 
more interesting when I get a linear term in there. 

So what happens now? Well, the effect of that linear term is to shift that bowl sorta 
over and down a little. So that instead of sitting where I drew it, let me erase it. If I 
know graph this function, this is my function of u, this is still the most important 
part, but now I have a first order turn. And the result is, it still goes through here. 
Right? Why does it still go through that same point? Because if I take u_1 and u_2 to 
be zero, I get zero. So I still get zero there. But the bowl  has shifted. It's more like 
something here. And it still has a minimum because this is still the all-important 
term. But it's just moved over and down. So it has the minimum value. It actually 
goes below zero, but if I look at it if I'm sitting at the minimum and looking I'm 
seeing a bowl going up, right. So I hope that picture shows. And now, of course, 
that's the geometry. In other words, the same geometry just moved the thing over 
and down. 

But the algebra is, where is the minimum? What is the value of that minimum? And 
this problem, 24, is one way to do the minimum. One way to do it. But actually, if 
you doesn't like linear, well I won't say didn't like linear algebra, that's against my 
religion. So if you like calculus and you said, wait a minute, if you give me something 
you want me to minimize, what will I do? I'll set derivatives to zero. 

And can I just jump to the answer? Oh, what derivatives do I set to zero now, for the 
minimum here? It's the first derivatives. And they're first derivatives with respect to? 
I look at df/d what? You see I've already given it away. These are going to be partial 
derivatives. Why's that? Because I've got two directions. So I have a df/du_1=0 and 
a df/du_2=0. In other words, when I sit here at the bottom I'm seeing this whole 
bowl above me. If I go along the u_2 direction it should go up and if I come along 
the u_1 direction, goes up. But it's flat at the bottom both ways. 

So what's my point here? If you like calculus, you'll get to two equations. And I just 
want to say what those equations are, because they're all important. Suppose we 
only had u_1 and nothing else. Then this would just be a parabola and the derivative 
of this would be at 1/2 K*u squared. Suppose n is one. I'm only in one. So what's 
the derivative of 1/2 K*u squared? The derivative. So I'm looking for if this was 1/2 
K*u squared and I took the derivative with respect to u, it would be? It'd be Ku. And 
it works here in the matrix case. And what would be the derivative of u, transpose of 
u times f, if u was just a number and if u was just one thing and f was a single 
number, the derivative would be? f, yeah. It'd be f. 

That's the system. I've jumped to the answer. That this set of two or n equations in 
matrix language would just be, and I'll even write it better as Ku=f. That tells me 
where the minimum is. The minimizing guy is, so this is in the base and then the 
thing is dropping down. I still have to figure out what's the bottom value. But I've 
now identified where the minimum occurs. So you get two questions about a 
minimum. Where is it? What value of u gives the minimum? And at that point, at 
that lowest point, how low is it? The one thing you've gotta remember is that when 
you minimize that quadratic, you get that system of equations. And then, of course, 
the answer, you have to solve that system. 

But this goes back to what I said at the first minute of today. That we have two ways 
of looking at a problem. Usually we go directly to the equations. Sometimes the 
problem comes naturally to us as a minimum problem. Like we have to minimize the 



cost, we want to build a new school or something. So we've got some cost function 
that we minimize that will lead, through calculus or linear algebra, to this. So I've 
done everything but answer the question 24. We only checked the one by one case 
to see that that's the right equations, derivative equal zero. And now you could use 
calculus as I said. 

But if I answer that question, well let me just do a little. The idea of that question 
24, so that was what? 1.6, 24, or something. Is that right? Yeah. Is that I could 
rewrite this to make it clear. I think it's u minus K inverse f. Transpose K times u 
minus K inverse f. And then a minus f 1/2, f transpose K inverse 1/2. Actually, my 
best friend in China told me this trick. And I didn't give him credit for it in the book. 
But I should have done. I just think that if you multiply all this out, you'll get this. 
It's what I would call an identity. That just simply means that it's just true for every 
u. It's true for everything. Can I try to multiply some of that out? Just so you kind of 
see it. 

Yeah, that's what I mean, multiply it out. You've got it. This thing would give me four 
terms. It'd be this transpose times that times that. Which is my guy here. And then 
I'll have something. It's just like numbers. Then this thing times that times this. And 
this thing times that times that. And this thing times that times that. Let me do that 
last one. What happens when I do the 1/2 and this transpose times the K times this. 
So I'm using the distributive, whatever, laws. Let's just do that particular term and 
see what we're getting. So I have 1/2 of the minus K inverse f transpose. So how do 
I write that? Shoot. Well, it's something times something transpose. So what do I 
have to do? Opposite order. So I have a minus, an F transpose and the K inverse 
transpose. You're seeing all this stuff. And then comes the K and then comes the 
minus, oh again the minus. So that'd be a plus, right? Times K inverse times f. 

So that's one of the terms. That's one of the terms that shows up. And what good is 
that one? So that's one. You could say that's the longest term. That's the one with 
the messiest term. But you can fix it. What would you do with that? K times K 
inverse is? Identity. So we can forget that. And now we're there. That's 1/2, f 
transpose, f on this side. Oh, what's K inverse transpose? It's the same as K inverse 
because K is symmetric, so its inverse is symmetric. So that transpose doesn't 
change the matrix. In other words, this term will show up and this term is oh! Nope, 
sorry. I was going to goof here. I was going to say this is the same as this, but it's 
not, right? Why not? Because it's positive. And this guy is negative. Has my good 
friend Professor Lin messed up? Nope. 

What's going to happen now? The two that I didn't do, you see, the 1/2 u transpose 
K u is here. Then comes this one, which I didn't do, and then another one that I 
didn't do, and then this one that I did. They'll all be the same. So they'll all 
contribute with their plus sign or minus sign and the net result will be a perfect 
match, yeah. So I won't wear out your patience by doing that. 

But I do want to make the point. What was Professor Lin's point in suggesting to 
write it in this more complicated way? His point was we could see this is just a 
constant. Doesn't depend on u. And now I can see what value of u would make this 
as small as possible. Remember, I'm still trying to minimize. This part, I can't make 
it bigger or smaller, it's fixed. It's u that I can play with. So what u should I choose 
to make this part smaller? Bear with me. What u will make this big mess as small as 
I can get it and how small can I get it? If I take u to B K inverse f, then this is zero, 



this is zero, I get zero. And that's my claim, that u equal K inverse f is the best 
possible, is the minimizer. 

And how do I know that I can't make this more negative than the zero? I can get it 
down to zero by making that to be the zero vector. But how do I know I can't make 
it below zero? The K is positive definite and I'm sitting here with some x transpose 
and some x. The X hax this sort of messy form but it's an x and here's its transpose. 
So this is an x transpose, Kx and can't be brought below zero when K is positive 
definite. Good. 

So we've said a good bit about positive definite here, but happy to think-- Yeah, 
thanks. In fact, finally a fifth. Exactly. Thanks, perfect question. And let me answer it 
clearly. Each of those five tests completely decides positive definite. So the five tests 
are all equivalent. If a matrix passes one test, it passes all five. So that's great, 
right? So we just do whichever test we want. Or whichever way we want to 
understand the matrix. 

I was going to add, I didn't say a lot about this one. Can I just add a note about a 
MATLAB command? The command chol(K). That's the first letters in the name 
Cholesky. So chol is the first four letters of this name. And that's a MATLAB 
command. If I've defined a matrix that's positive definite and I use that command, 
out will pop an A, one particular A that works. Out will pop on A that makes this 
work. It'll be a square A and it'll be upper triangular. So out will pop, so this 
command is very, very close to the LU but it's just sort of the appropriate version, 
symmetrized version of elimination when you have a positive definite symmetric 
matrix. If your matrix is not positive definite, the MATLAB will tell you so. So it 
produces one particular A. There are many A's that would work, but there's one 
particular upper triangular one. It's just related to the usual u, but yes, thanks. 

No, I only even get into that ballpark if the matrix is symmetric. I don't touch it 
otherwise. So my matrix is symmetric before I begin. So I know good things about 
it. And here I'm asking for more. Here I'm asking are the pivots all positive? Are the 
eigenvalues all positive? So that's more. But I could think of some interpretation that 
would, for non-symmetric matrices, but it has problems, so I'd rather just leave it. 
Stay with symmetric. Well that's two hours of lots of linear algebra. 

I'm hoping you're going to like the MATLAB problem. Would you like to see what it'll 
be? I'll just tell you what the equation will be. So it'll be a differential equation. Oh, 
dear, what is it? So it's a differential equation with a -u'' that we know and love. And 
what else has it got? Oh yes, right. So here's the problem. Here's the equation. So it 
has the -u'', the second derivative and it has a first derivative equal whatever. In 
fact, the example will choose a delta function there. So what am I talking about 
here? This would be a diffusion and this would be, anybody met these things before? 
That would be a convection. So that's a first derivative, that's an anti-symmetric. 
The MATLAB problem is now going to create the difference matrix for that. So the 
symmetric part will be our old friend K. But now we've got the convection term is 
appearing. And it's going to be anti-symmetric. And if v is big, it gets more and more 
important. So what happens? What happens with equations like this? Really this is 
like the first time in the course that we've allowed this first derivative term to pop 
up. But nevertheless we can see a lot of what's happening. 

And how to deal with those equations? I mean, if you ask a chemical engineer or 
anybody, they're always dealing with a flow, like the Charles River is flowing along, 



that's coming from the velocity there, but at the same time stuff is diffusing in it. It's 
just a constant problem in true, true applications. And this is the best model, I think. 
So you'll see that and I'm pleased about that. As you'd see. Any last question? I'm 
always happy. Well I'll see you Friday then. Thanks for coming. 


