MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
18.085 Quiz 2 November 3, 2004 Professor Strang

Your name is: _SOLUTIONS

Grading 1 .
2.
3.

1) (36 pts.$) \quad$ The 5 nodes in the network are at the corners of a square and the center. Node 5 is grounded so $x_{5}=0$. All 8 edges have conductances $c=1$ so $C=I$.

> current source

$$
A_{8 \times 4}=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

(a) Fill in the 8 by 4 incidence matrix A (node 5 grounded). What is $A^{\mathrm{T}} A$? Is $A^{\mathrm{T}} A$ invertible $(\mathrm{YES}, \mathrm{NO})$?

$$
A^{\mathrm{T}} A=\left[\begin{array}{rrrr}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & 0 \\
-1 & -1 & 4 & -1 \\
-1 & 0 & -1 & 3
\end{array}\right]
$$

(b) How many independent solutions to $A^{\mathrm{T}} y=0$? 4. Write down one nonzero solution y.

Ans. The upper left loop gives $y=(1,-1,0,1,0,0,0,0)$
(c) The current source $f_{1}=3$ enters node 1 and exits at grounded node 5. In 2 by 2 block form (using A), what are the 12 equations for the 8 currents y and the 4 potentials x ?

$$
\left[\begin{array}{cc}
I & A \\
A^{\mathrm{T}} & 0
\end{array}\right]\left[\begin{array}{l}
y \\
x
\end{array}\right]=\left[\begin{array}{l}
b \\
f
\end{array}\right] \quad \text { with } \quad b=0 \quad \text { and } \quad f=\left[\begin{array}{l}
3 \\
0 \\
0 \\
0
\end{array}\right]
$$

(d) Write out in full with numbers the 4 equations for the 4 potentials, after the currents y are eliminated. Using symmetry (or guessing or solving) what is the solution $x_{1}, x_{2}, x_{3}, x_{4}$?

Ans. The equations are $A^{\mathrm{T}} A x=f$ and the solution is $x=(2,1,1,1)$. Unit currents flow to x_{5} on edges 1-6 and 2-7 and 3-8. Voltage drop $=1$ on those six edges.
2) (24 pts.) The same 8 edges and 5 nodes form a square pin-jointed truss. The pin at node 5 is held in position so $x_{5}^{\mathrm{H}}=x_{5}^{\mathrm{V}}=0$. All 8 elastic constants are $c=1$ so $C=I$.
(a) How many unknown displacements? $\underline{8}$

What is the shape of the matrix A in $e=A x ? \underline{8}$ by 8
Find the first column of A, corresponding to the stretching e in the 8 edges from a small displacement x_{1}^{H} at node 1 .

$$
\left[\begin{array}{c}
-\sqrt{2} / 2 \\
0 \\
+\sqrt{2} / 2 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

(b) Are there any nonzero solutions to $A x=0$? (YES, NO)

How many independent solutions do you physically expect? $\underline{1}$
Draw a picture of each independent solution (if any) to show the movement of the 4 nodes.

Ans. Rotation around node 5 has $x=(2,0,1,1,1,0,1,-1)$.
(c) How many independent solutions to $A^{\mathrm{T}} y=0$? Can you find them?

Ans. Since A is square, there will be one line of solutions to $A^{\mathrm{T}} y=0$ when there is one line of solutions to $A x=0$ (Rank 7). The equations $A^{\mathrm{T}} y=0$ look for a set of bar forces that balance themselves! One set is drawn here:

3) (40 pts.) (a) Find a 4th degree polynomial $s(x, y)$ with only 2 terms that solves Laplace's equation. Please draw a box around your answer $s(x, y)$.

Ans. $\quad(x+i y)^{4}$ gives $s(x, y)=4 x^{3} y-4 x y^{3}$.
(b) In the $x y$ plane draw all the solutions to $s(x, y)=0$. Then in the same picture roughly draw the curve $s(x, y)=c$ that goes through the particular point $(x, y)=(2,1)$.

Ans. $4 x^{3} y=4 x y^{3}$ gives $x=0$ or $y=0$ or $x= \pm y$ (four lines). Through $x=2, y=1$ will go the curve $s(x, y)=4 \cdot 8-4 \cdot 2=24$. It won't cross the lines because they have $s(x, y)=0$. It will get close to the lines $y=0$ and $x=y$ as x gets large, because $4 x^{3} y-4 x y^{3}=24$ gives $x y(x+y)(x-y)=6$. If x and $x+y$ get large then either y or $x-y$ must get small! The curve isn't a hyperbola, I think it must be symmetric across the line $\theta=\pi / 8$.
(c) If the curves $s(x, y)=c$ are the streamlines of a potential flow (in the usual framework), what is the corresponding velocity $v(x, y)=w(x, y)$?

$$
w(x, y)=\left(\frac{\partial s}{\partial y},-\frac{\partial s}{\partial x}\right)=\left(4 x^{3}-12 x y^{2}, 4 y^{3}-12 y x^{2}\right) .
$$

(d) (this Green's formula question is not related to parts a, b, c)

Suppose $w(x, y)=\left(w_{1}(x, y), 0\right)$ is a flow field. With $w_{2}=0$ write down the remaining (not zero) terms in Green's formula for the integral $\iint(\operatorname{grad} u) \cdot w d x d y$ in the unit square $0 \leq x \leq 1,0 \leq y \leq 1$. Substitute for n and $d s$ when you know what they are for this square.

Ans. Green's formula in the plane is

$$
\iint(\operatorname{grad} u) \cdot w d x d y=-\iint u \operatorname{div} w d x d y+\int u w \cdot n d s
$$

Here $w_{2}=0$ and $n=(1,0)$ on the right side and $n=(-1,0)$ on the left side. This leaves

$$
\iint \frac{\partial u}{\partial x} w_{1} d x d y=-\iint u \frac{\partial w_{1}}{\partial x} d x d y+\int_{\text {up right side }} u w_{1} d y-\int_{\text {up left side }} u w_{1} d y
$$

(e) A one-dimensional formula on any horizontal line $y=y_{0}$ is integration by parts:

$$
\int_{x=0}^{1} \frac{d u}{d x} w_{1}(x) d x=-\int_{x=0}^{1} u(x) \frac{d w_{1}}{d x} d x+u w_{1}(x=1)-u w_{1}(x=0) .
$$

Here u and w_{1} are $u\left(x, y_{0}\right)$ and $w_{1}\left(x, y_{0}\right)$ since $y=y_{0}$ is fixed.

Question 1 How do you derive your Green's formula in part (d) from this one-dimensional formula? ANSWER IN ONE SENTENCE, NO MATH SYMBOLS !!

Ans. Integrate the 1 D formula from $y=0$ to $y=1$.

Question 2 (not related) Find all vector fields of this form $\left(w_{1}(x, y), 0\right)$ that can be velocity fields $v=w=\left(w_{1}(x, y), 0\right)$ in potential flow [so $v=\operatorname{grad} u$ and $\operatorname{div} w=0$ as usual].

Ans. Potential flow with $w=\left(w_{1}(x, y), 0\right)$ requires

$$
\operatorname{div} w=\frac{\partial w_{1}}{\partial x}=0 \quad \text { and also } \quad w_{1}(x, y)=\frac{\partial u}{\partial x} .
$$

Then $w_{1}=$ constant! The only horizontal potential flow is uniform flow.

