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PROFESSOR STRANG: OK. All right. Good morning. So we're doing finite elements. 
The element that we considered so far was the basic linear element, continuous. But 
of course, the slopes have jumped. The slope was minus one over delta x for that 
one. This one was a plus and then a minus. So a jump in slope but no jump in the 
function. So actually, my abbreviation for that would be C^0, saying that it's 
continuous but no derivative is continuous. And now we'll get to some elements 
where the slope is continuous. It's sort of fun to create these finite elements of 
higher degree. It's pretty straightforward in 1-D. And that's where we are now. So 
we'll get second degree elements and third degree elements. And that gives us, as 
we'll see, higher accuracy. 

So I want to connect the degree of the polynomials to the accuracy of the 
approximation. Part of that connection is to recognize that these problems have a 
strong form, as we know, the equation; a weak form, that's the one that has test 
functions. And also a minimum form that we'll see. 

So how would I get some quadratics, so second degree elements, parabolas into the 
picture? You remember Gelerkin's idea? Choose trial functions. And we're taking 
those to be the same as the test function. So these are the trial functions we've 
chosen. One, two, three, four of them. And they're linear. And that limits the 
accuracy that you can get, because your approximations then are combinations of 
those. So they're like broken line functions, linear approximations. And the accuracy 
is not great. It's sort of the lowest level possible. So how would you get parabolas? 
So this was first guy. The second guy is going to be continuous and quadratic. So it's 
going to have new trial functions. In addition to these, I'm going to put in some 
more. Gelerkin's happy with that. I still proceed as usual. My approximation is some 
combination of those. It's only going to be continuous. So it'll just be a C^0 guy 
again. That means jump in slope. The first derivative isn't there. Eventually, I want 
to get to a C^1 where the slopes are continuous. 

OK, but how would I get some quadratics? All I want now is my functions, my space, 
my combinations should be the piecewise parabolas instead of piecewise linear. And 
the pieces are broken at the nodes. 

OK, so here is a way to do it. Inside each interval, I'm going to add, I'll just call them 
bubble functions. So these will be new additional guys. So this will be my first phi. 
You remember that half hat? Because the problem I was doing was a free fixed 
problem. That's why I had a half hat at this end, because there was no boundary 
condition that my functions had to satisfy. At this end, there was. It was fixed. So 
that's why the hat ended, and there was no half hat, there's no extra function there. 

http://ocw.mit.edu
http:ocw.mit.edu


So I have right now one, two, three, four. I'm going to add four more bubble 
functions. Each one will be inside an interval. So it'll be a little parabola. This is 
function number whatever. If I number this number one, let's say, phi_1 now -
that's probably a change in numbering -- phi_2 is going to be my bubble. And you 
see what my bubble function is? It's a function that goes there and straight. So it is 
continuous, no jumps, and it is second degree. It's a parabola, and I'll make its 
height one. 

And then there'll be another function. If I had another color I could draw it. Well, I'll 
just do it with broken lines, maybe. So there'll be another bubble function in here, a 
third bubble function in the third interval, and a fourth in the fourth interval. You see 
that I've now got my old phi_1, phi_3, phi_5, and phi_7 were the hat functions. But 
now I've got a phi_2, phi_4, phi_6, and phi_8 that are these new trial functions. 

So part of the message is, we can throw an additional functions. They don't have to 
be polynomials, but those are the simplest choices. Why are they simple? Because, 
you remember, that in the end when I made the choice, I have to do various 
integrations. So you remember that I have to integrate to find entries K_ij. Do you 
remember what that interval looked like? You certainly remember F_i. That was the 
integral from zero to one of whatever function phi_i we had, times the F(x)dx times 
the load. 

And we computed these. You remember we computed these for the piecewise linear 
guys. But I don't think I wrote down the expression that were really doing, so let me 
just do that. It's c(x)du, no. d phi_j/dx and a dV_i/dx. Those were the integrals that 
we had to do. And we were taking phis to be the same as V's. Maybe I'll just do that 
here, because I don't plan to make any other choices at all. d phi_i/dx. 

It's a symmetric matrix now. K_ji, because when I'm choosing phis the same as the 
V's, this is what it looks like, and if I switch j and i, I don't see any difference. 

So these are the things that have to be integrated. And those are the ones we did 
integrate when phi was piecewise linear. When phi was piecewise linear, the slope 
was piecewise constant, and we had really easy integrals. Very easy integrals. We 
had to pay attention to where we were was the slope on a minus interval or on a 
plus interval, but they were easy to compute. And they led us back to the kind of 
matrix that we've seen before. The twos and minus ones. And our right hand sides 
looked familiar. 

Now, we've got new functions. We still have the same formulas. No change in 
formulas. The system is really quite successful, because these are the things that we 
have to compute. So now I'll have to integrate these parabolas, these little 
parabolas, half of the phis will be little parabolas, and their derivatives will be linear. 
So you see, I'll have more calculations to do. Which I don't plan to do, but more 
integrations. For example, the diagonal entry, say, 2, 2, which will come from that 
bubble with itself. K_22, then, will be the integral of c(x), times the derivative of that 
bubble, which will be a straight line times itself, so it would be squared. And c is 
positive, so this K_22 is going to be some nice positive number. But we'll have to 
figure out what it is. 

Maybe I'll just say one fact that we'll come back to. That this K is symmetric positive 
definite. You thought it would be. By using the letter K, we kind of expected it to be. 



And it will be. It'll be symmetric because the phis and the V's are the same. And it 
turns out it's positive definite. So it's just great. Just great. We have a little more 
effort, either to use a formula for integrating polynomials, or using numerical 
integration. One way or another, and I won't concentrate right now on that point, we 
get these numbers. 

Okay. Here's something to concentrate on. What kind of a matrix K do we have? 
Where will it be non-zero? So it'll be eight by eight, right? I'll follow through on that 
choice. Just to say, where will I see non-zeros here? Because if you get that point, 
you see the way things come together. I'll just put a little x for non-zero. 

So K_11. So what's that first row of K? It's coming from the first function, integrated 
against itself. K_11, if for 1, 1, we'll get something there. Will we have something in 
the 1, 2 position? That's my question, do we have something in the 1, 2 position? 
What's 1, 2? That's this function against the bubble function, yes? Right? They're 
non-zero at the same place. We can expect something there. What about K_13? 
That's what we've done before, that's this one against this one. Yes? We expect a 
non-zero there. But then what? After that, what will the rest of that row be? Zero. 
Because that first half hat doesn't touch any of the others. 

So let's go on. Of course it'll be symmetric. I know this much. So this is the half hat 
row, and this is the first bubble row. Because the half hat was phi_1 and now the 
first bubble is phi_2. 

What non-zeros do we get in the stiffness matrix? Again, we could unconstruct it 
entry by entry. Another way to construct it will be element by element, stamp them 
in. You're beginning to see the idea of that. So what do I get for that bubble? I just 
look to see which elements touch that bubble. And which ones do? One, two and 
three, and not four. Right? In that row, we only get -- so from that bubble, I think 
we only get that much. 

Now, we're not quite seeing the picture yet. Let me go to the next hat. The hat, 
phi_2, and then I'll do the bubble. Oh, no, sorry, the hat's numbered phi_3, and then 
the next bubble is numbered phi_4. 

Where do I get zeros? You can tell me, where do I get zeros? From inner products, 
from these guys, when i is three. So which phis does phi number three overlap? 
That's all I'm asking. Does it overlap number one? Yes. Does it overlap phi number 
two? You want to highlight, so we're now looking at phi_3, at this hat. 

God, where's it gone? That's the one we're doing now? 

So what does it overlap? It overlaps the half hat, does it overlap the first bubble? 
Yes. Does it overlap itself? Yes. Does it overlap the second bubble? Yes. Does it 
overlap the next hat? Yes. And then all zeros. Okay, and now do one more row. 
Bubble four. So now I'm looking at this guy, this next bubble. phi_4. What does that 
overlap? Does it overlap the first half hat? Nope. Of course, symmetry told us that. 
Does the second bubble overlap the first bubble? No. Big point: zero there. Does the 
second bubble overlap the hat? Yes. Does the second bubble overlap itself? 
Certainly, on the diagonal we have something. Does the second bubble overlap the 
next hat, phi_5? Yes. And that's it. I think. The second level does not overlap the 
following bubble. 



I don't know if you see what pattern we're getting here. Those were special rows, 
because that was only a half hat. These are typical rows. A typical hat function, that 
row is showing us five non-zeros, because it overlaps itself, the neighboring hats, 
and the neighboring bubbles. But the bubble row only has three, because a bubble 
overlaps itself, the neighboring hat on each side, but not the neighboring bubbles. So 
we have only three non-zeros. Do you see that the next row will have five? Will I get 
it right? I hope so. The next row we'll have, I think they'd be here. And then the next 
row will have only three guys, maybe here, here, here. 

Well, it's certainly a band matrix. So you could say, okay, it's a band matrix. I 
wouldn't call it tri-diagonal anymore. If I showed you that matrix and said, what kind 
of a matrix, you'd say a band matrix. If you wanted to tell me that it had five bands, 
you could maybe say penta-diagonal, or something. But it's easy to work with, of 
course. That's the point of finite elements, is that all the functions are local, so that 
we get all zeros when trial functions don't overlap. 

My additional point was just a small one that's not a big deal, but it's a little bit 
worth noticing. These rows with only three entries, three non-zeros. I guess what I 
want to say is I have to solve eight equations and eight unknowns. And the normal 
way to do it would be just elimination. LU, that would work fine. Start from the top, 
eliminate, and you've got it. And of course in one dimension, nobody would do 
anything else. That would be simple. I just want to say, these bubbles, by giving me 
extra zeros, I could eliminate the bubbles first. Can I just make this point but not 
labor it? I could eliminate the bubbles first. I could use this equation to express the 
bubble coefficient in terms of its neighbors. I could use this one to express the 
bubble coefficient in terms of it neighbors. And I could plug back into the other 
equations. I could simplify this. I could get the bubbles done first if I wanted. I can 
see that to go into the gory details is probably not wise. But bubbles are easy to do. 
However there are better elements. 

So that's my discussion of quadratic elements, almost complete. It's not a big 
favorite, because cubics are better. 

So why are cubics better? Why are cubics better? So you're going to say, okay, 
upgrade to cubics. How shall I do that? And I want to say a word about the error 
here. Of course, the reason quadratics are better than cubics... Sorry, the reason 
why quadratics are better than linear, and cubics will be better than quadratics is I'm 
getting more accuracy. 

Suppose my true solution may be some curve like that. Okay. My piecewise linear 
elements, suppose the piecewise linear elements happen to be, as they would in a 
special model problem, right on the money, at the nodes. Usually they won't be. But 
what would be the error in that one? 

Well, no error at all at the nodes as I've drawn it. But that's not what I'm interested 
in. I'm interested in, how big is that? How far off is the displacement? What's the 
maximum error in the displacement. Do you have any idea? If this is size h delta x. 
Shall I call it delta x or h. How far does a curving function escape from the... I need 
to blow that up, don't I? So I have a curving function and a linear function, and I 
want to know how far apart they are over a distance of length delta x. What's this 
scale? That's the question. It's just good, it'll have a simple answer and it's great to 
know it. 



Anybody want to make a guess? Is that scale of size delta x? Is it of size delta x 
squared, size delta x cubed? It's that exponent of delta x that is telling me how big is 
the error? And it's easy to find once you get the hang of it. Anybody want to make a 
guess? Delta x? Squared. Squared would be the right guess. Squared would be the 
right guess. I could just turn that picture if we wanted, to this is delta x. Now it 
would look like that, pretty much. Doesn't have to be symmetric, of course, because 
this could be a complicated function. But when I focus on a little delta x interval, 
every function looks like a little polynomial. The error there, let's see. What would 
that function be? 

I could go forever on this. But look, if the slope is something, whatever, let me 
change numbers here. Let me call it from zero to y, what would be a little parabola 
that has a slope of one, let's say, at both ends. What would that parabola be? We 
probably have seen that before. If I wanted a slope of one at both ends, the 
polynomial would be something like... what would it be? Sorry, tell me that little 
polynomial. It's a polynomial in x, it's just a quadratic. Its slope is one, so it maybe 
starts with an x. 

I've got to bring it down here. It's x times one minus x over.... I didn't like y ever in 
the first place. What do I want to put there? I don't want to put a one. That would 
make it look big. y is there. Okay, I think that quadratic is zero at zero, because of 
that term. It's zero at x=y, because of that term. It's second degree. And I think its 
height is a maximum right there. And what is that height? At y/2, this is y/2, this is 
y/2. That height is y squared over four. That's what I was shooting for. The square. 
That in a little interval of length y, for length delta x, if I draw a little parabola and 
I'm matching at the ends, then the height it reaches is like y squared. That's the 
scale. So my conclusion is that if I use these basic hat function elements, the error I 
get is -- so can I list the errors? -- the error is delta x squared. That's the 
displacement error. The error in U. 

I'm not proving anything. The careful discussion of the accuracy is a later section in 
the book. But I'm trying to make the main point, is that if we're fitting functions by 
straight lines, then we have an error of delta x squared. And what's the slope error? 
What do you think is the slope error? Because for us that slope is important. That's 
the error in the stretching and the strain. So the error in the function is delta x 
squared. The error in the slope will be one order less, just delta x. 

Okay, I'll come back to all this. Now, make a guess. Suppose I include these bubble 
functions. With delta x as my length scale horizontally, what will be the scale of the 
error? What do you guess is the expected error in displacement for a general 
problem, for a general c(x) and F(x). Which I won't get exactly right, but how close 
will I come? I'll come within delta x to what power? Make a guess, please. 

Four is an optimist. I won't get up to four. Cubed. I'd only get cubed. I'll get one by 
increasing the degree of the polynomial by one, I'll get one degree better. So it you 
could look at it this way. Suppose I have any function. This is a another way to think 
about the accuracy. Suppose I have any function F(x). The whole point of calculus is 
that I could start, if I start where it is at zero, then I add in F'(0), the slope times x. 
Then I add in 1/2 F''(0) times x squared, and so on. Right? It's called the Taylor 
series. And we're not paying any attention to convergence, or high order. It's the 
early terms that I'm interested in. And the point is that if my functions include linear 
functions, which the hats did, they will be able to get these terms right, and this will 
be the error that I missed. I'm just looking to see what's the first term in the Taylor 



series that I will not get. And if I only have hat functions, I can't get an x squared. I 
can't get a parabola. But when I go here and include the x squareds, I can get that 
term right. So then it'll be the 1/6 f triple prime x cubed that I miss. So the error will 
be the next missing term. 

Okay, so that's thoughts about the error. And of course that's why those elements 
are better than these. They take more work, but they are worth it. But now I want to 
tell you about the next elements. Cubics. Where you're going to expect to get delta x 
to the fourth. So now we're getting serious accuracy. Now we're getting good 
accuracy. Of course our problem is not the most difficult problem. It's in 1-D. But 
this is good. 

Okay. This was now the fun in the golden age of finite elements. To construct cubics. 
What shall I use as basis functions for cubics? So I want to have a cubic in each 
piece. First of all suppose I just want no more than that. Suppose I'm happy with 
just continuous functions and I let the slope jump. What new trial function shall I put 
in? So I'm going to put in new trial functions. What will they look like? Little cubics? 
Little third degree bit pieces. Instead of parabolas, they'll be little pieces of third 
degree. And I could put in four more bubbles. Four cubic bubbles. So I would be up 
to twelve degrees, twelve by twelve matrices, twelve functions. And for that size 
delta x, that would give me delta x to the fourth. So that would be okay. 

There's a better idea. You can see that I left space. I'm going to make the slope also 
continuous. I'm not going to allow jumps in slope. Think how will I do that? So I'm 
going to call those C -- what will I call that when the slope is continuous? The first 
derivative, I'll call that C^1, continuous first derivative. 

Okay. Now I'm actually in section 3.2, where these better elements, these really 
nifty elements are constructed. C^1 continuous slope cubics. Okay. Ready for those? 
What shall be my trial function for continuous slope cubics? So I have to start again. 
I have to start again because the hat functions are out now. Those hat functions 
have a jump in slope. The bubble functions have a jump in slope. I'm rethinking here 
to create a better element. 

Okay. So let's just think, if we've got a chance at it, how could these elements work? 
Okay, so here is the idea, then. Here is my interval. Zero to one, and here's a typical 
interval. And now at a typical node, like node one, I plan to have as unknowns the 
height of the function, as before, and also the slope. So I want the function, my trial 
function is going to have some height and some slope. And at node two, it's going to 
have some height and some slope. And here's the question. Here here's the good 
point. That those four numbers, the two heights and the two slopes, that gives me 
four things, four quantities. How many quantities do I need to determine a cubic? So 
by a cubic, of course, I mean by a cubic something like a zero plus a one x plus a 
two x squared and a three x cubed. It's called a cubic because it's x cubed. 

So how many numbers here? Four. Perfect match. There's exactly one cubic that has 
a specified height and a specified slope at these two ends. There's one cubic that'll 
do that. And then whatever the height here is and whatever the slope there is, 
there'll be one cubic with that height and that slope that comes into this one. And 
you see that they will have continuous slope. Because of course the slope is 
continuous in between; it's a polynomial. The question is always at the nodes. But I 
use the same number coming from the left and from the right. The slope has become 



an extra unknown. The slope has become an extra unknown. So I have height slope 
at every point. 

So that's one way to describe these trial functions now. The trial functions have 
height and also slope at each node. So what does that mean? That means that I'm 
going to have two unknowns. Two functions, two trial functions, each with its own 
coefficient at each node. So if I take a typical node there, I want two functions. 
Okay, this is interesting. But you see what I'm creating. I think I'm going to get two 
functions there, two functions there, two functions there, two functions there, right? 
Because nobody's constraining that. So I'm up to eight. 

And how many functions do you think I'm going to have associated with that node. 
Only one. Why? Because the height is fixed. So I think I've got nine trial functions 
here. And if we can see what those are, then the system will take over. They're my 
phi_1 to phi_9, whatever they plug in here, they plug in the right hand side, I'll have 
a nine by nine stiffness matrix. It'll be local again. Well, let's see if we can figure out 
these functions. 

Okay, so you have the idea? I'm expecting two trial functions. One is sort of a round 
hat. All right, let me draw that. The round hat function will be the function -- These 
will be the round hats, and they'll be associated with, they give me heights. And then 
I'll also have an additional one, except at the last node. And these will be -- I don't 
know what to call them yet. You'll have to give me a name. These will give me the 
slopes. 

Okay. So what does a round hat look like? Now these have to be, follow my rules, 
they have to be continuous, their slope has to be continuous. And I want to take the 
one that has height one and zero slope there. And it should have height zero and 
zero slope, here. Height zero, zero slope. You see what it's going to be? This phi, 
whatever number it is, it'll be the phi whose coefficient tells me the height at node 
one. So here's node one. 

What will it look like? What will this function do? Well, there is exactly one cubic, that 
starts from zero with slope zero and ends there, ends at one with slope zero. Right? 
That's what we said; four numbers determine that cubic in that interval. Then there's 
another cubic that, with those two numbers again, that keeps the continuous slope, 
and these two numbers in this interval. And of course it'll just be symmetric. You see 
the round hat? So that's the basis function, the trial function that has continuous 
slopes and heights, of course, and it has height one at that point. 

And now let me draw the one that has height zero slope zero, height zero slope zero. 
And what do I want it to do there? What should this function be like? It should be the 
one that it's coefficient will tell me the slope. So I want it to have a slope of one and 
a height of zero. Do you see these functions, shall I call these the height functions, 
phi h 1? That's the phi, that's the trial function that tells me the height at node one. 
When I take combinations, it gets multiplied by U h 1, which is exactly the height at 
node one. Now what about this guy? This guy is going to start with zero slope at 
zero. It's going to be a cubic, and there's exactly one cubic that'll do it. It'll look a 
little like. Then there'll be exactly one cubic that does that and gets back to zero. You 
see that that's possible? In each interval, I've got four numbers: two heights, two 
slopes. So this would be a picture of the phi slope at node one function. 



So that's a standard function, it's a cubic, piecewise cubic. Local again, because in all 
these intervals it's zero. And it will be, when I go to take combinations of all these 
guys, it'll be multiplied by its coefficient, U slope one. And then I'll have nine all 
together. But those two are the typical ones. 

Do you do see how that's going? It's more subtle than hat functions. Suppose 
whoever's writing the finite element code gets a formula for those phis and plugs 
them into the integrals, comes out with a stiffness matrix. Actually, we could even 
look at that stiffness matrix. This is a good way to understand the picture. 

Now it'll be nine by nine. Right? So here we'll have a typical, this'll be our phi height 
1 row, and this'll be our phi slope 1 row, and this'll be our phi height 2 row, and so 
on. Of course, I didn't leave room for all. What will a typical row of this stiffness 
matrix have in it? I'm just asking about the overlaps. phi 1 height certainly overlaps 
itself. Does phi 1 height overlap phi_1 slope? Yes or no? Sure. Sure. Does phi_1 
height overlap phi_2 height? Yes. Yes. Because the phi_2 height will go up like that. 
You see? And the phi_2 slope. So actually we'll have, I think we'll have six non-zeros 
on a typical row. 

Is that right? Six non-zeros? Because a typical h -- this is maybe not so typical, 
because to the left of it there's only one -- No, there are two? Right? There's a phi_0, 
phi h and a phi s 0. Sure, there are two here, the two guys here, there's one height 
guy, and there's one -- what's cooking in that? Oh, it's got a slope of one and it gets 
back to zero. 

What I'm drawing now in little dashed lines was the phi slope 0. The one that gives 
me a slope at node zero, and this is the one that gives me a height. Yes. Do you see 
it? So above this was a phi slope 0, and stuck in there was a phi height 0. Six 
diagonal matrix. I think it helps to draw that little thing with x's and zeroes, because 
then you sort of see how things are fitting together. 

Okay. So these functions now, I've gone into section 3.2 for that. I want to go to a 
slightly different topic, and then I'll come back in section 3.2 to these cubics. So 
these are C^1 cubics, continuous slope cubics. Very interesting construction. Are you 
seeing how it could go in more dimensions? I mean, that's what we'll see for 
Laplace's Equation, how can you construct quadratics, cubics in a plane. It gets 
interesting. But you'll get the knack of these guys. These are pretty direct, and very 
useful. 

So what's the effect? The effect is that we get a matrix. It looks quite like a 
difference matrix. Well, actually, the height rows and the numbers in the height rows 
and the slopes rows look different. We're getting something new here. We're getting 
matrix, a KU=F, that's going to give us fourth order accuracy. So the accuracy has 
moved up. So we've got up to fourth order accuracy, which we could get by finite 
differences by a lot of patience. We get them from finite elements in a straight way. 

Okay, any question or discussion? I'm talking real fast to get this new idea of 
constructing finite elements here. 

I do want to say something about that line. Because that's a part of this business of 
estimating the accuracy. It's a key idea in the background of the Galerkin method, 
and the minimum form would be associated with names like Raleigh and Ritz. All 
right. I'll just go directly to that, if I may. 



So what I want to do is tell you, for our model problem, I want to tell you the strong 
form-- let me do it this way. I'll put the strong form, the weak form, and then I want 
to add in the minimum form. Okay. So the strong form of our equation was minus 
the derivative of c*du/dx=f. Okay. What was the weak form? This is an f(x). The 
weak form, how do you get to the weak form? You multiply both sides by a test 
function, you integrate, you integrate by parts, and you get this beautifully 
symmetric form that we have up there, du/dx*dv/dx*dx, equals the integral of 
f(x)*v(x)*dx. I write that again, just so you see the nice symmetry of that weak 
form. And it's for all test functions v Okay. 

I'm shooting for a third description. A third description of the same problem. And it's 
really neat to see that you have that. Let me just see it first in the discrete case. The 
discrete case, the strong form would be A transpose C Au=f. That's the strong form. 
Right? I always like to see the discrete one first, and then the continuous. Okay, 
what would be the weak form in the discrete case? I would multiply by a vector v, 
and I would take inner products A transpose C Au inner product with v, equals f inner 
product with v. You can use dot. So that would be the weak form. I've just taking the 
dot product of both sides with v. Now you'll see the weak form better if, what should 
I do? What would make that look nice? So that's the dot product of A transpose C Au 
with v. 

And what do I do to make that look nice? Do you get the idea yet? It doesn't look 
pretty to me. It's all lopsided. Right? So what can I do with A transpose? What's the 
rule about A transpose? That if I have A transpose times something, dotted with 
something, what can I do? I can move the A transpose over to the other guy. And 
what will it be when I do that? So I take it away from here, and what do I put there? 
A. That's the whole point of transposes. Transposes, you put them on the other side 
of the dot product, you take the transpose, so it would be literally, maybe A 
transpose transpose, which is A. 

What I just did there is integration by parts. Well, summation by parts, because I'm 
in the discrete case. The whole idea of integration by parts amounted to taking A 
transpose off of u, off of this, and putting a over there. Isn't that neat? And you see 
that this CAuAv is just what I have here. C, a is derivative, so this is CAuAv. Inner 
product. That's cool. That's just like how it should be. I just followed that rule, that A 
transpose times something, shall I call it w, inner product with u, is the same as 
wAu. That if I bring A transpose over, it becomes an A. If I bring an A over, it would 
become an A transpose. 

All right, what about the minimum form? Have I got one minute to do the minimum 
form? Yes. So what's the minimization that's hiding behind this? The minimization in 
the discrete case, do you remember? We're looking at Ku=f. And some quadratic 
quantity from least squares has its minimum when Ku=f. And it's 1/2 u transpose Ku 
minus u transpose f. Where K is A transpose C A. This is the minimum statement of 
the problem. That if I look for the u that minimizes that quadratic, it leads me to the 
equation Ku=f. So that's the minimum statement. And if we want it to really look 
perfectly like the others, I would put in A transpose C A. 

Okay. Can I write down next time, because our time is really up. It's not fair to -- all 
I'm going to do is write down the same thing here. I'm minimizing 1/2 -- oh, I'm 
going to do it anyway. c(x)*du/dx squared, minus the integral of f(x)u(x). So that's 
the minimum problem. Minimize over all u, this quadratic. This is the right way to 



see these problems. You see a differential equation, which we use for finite 
differences; you see a weak form, which we use for finite elements; and now you see 
a minimum form. 

Okay, that gives you something to think about. And there'll be a homework on finite 
elements that'll give you a chance to use them. Okay, thank you. 


