MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
18.085 Quiz 3 December 8, 2006 Professor Strang

Your PRINTED name is: SOLUTIONS \quad Grading $\begin{aligned} & 1 \\ & 2\end{aligned}$ 3

1) (30 pts.) (a) Suppose $f(x)$ is a periodic function:

$$
f(x)= \begin{cases}0 & \text { for }-\pi<x<0 \\ e^{-x} & \text { for } 0 \leq x \leq \pi \\ f(x+2 \pi n) & \text { for every integer } n\end{cases}
$$

Find the coefficients c_{k} in the complex Fourier series $f(x)=\sum c_{k} e^{i k x}$. What is c_{0} ? What is $\sum_{-\infty}^{\infty}\left|c_{k}\right|^{2}$?
(b) Draw a graph of $f(x)$ from -2π to 2π. Also draw a careful graph of $d f / d x$. How quickly do the coefficients of $f(x)$ decay as $k \rightarrow \infty$ and why?
(c) Find the Fourier coefficients d_{k} of $d f / d x$. Do they approach a constant (or what pattern do they approach) as $k \rightarrow \infty$? Explain the pattern from your graphs.

Solution.
(a) $c_{k}=\frac{1}{2 \pi} \int_{0}^{\pi} e^{-x} e^{-i k x} d x=\left.\frac{1}{2 \pi} \frac{e^{-(1+i k) x}}{-(1+i k)}\right|_{0} ^{\pi}=\frac{1}{2 \pi} \frac{1-e^{-(1+i k) \pi}}{1+i k}=\frac{1-(-1)^{k} e^{-\pi}}{2 \pi(1+i k)}$
$c_{0}=\frac{1-e^{-\pi}}{2 \pi} \quad \sum\left|c_{k}\right|^{2}=\frac{1}{2 \pi} \int_{0}^{\pi}\left(e^{-x}\right)^{2} d x=\frac{1-e^{-2 \pi}}{4 \pi}$
(b) The graph of $f(x)$ includes a jump of 1 at $x=0$ and a drop of $e^{-\pi}$ at $x=\pi$. So $d f / d x$ includes $\delta(x)-e^{-\pi} \delta(x-\pi)$. (Both function have e^{-x} from 0 to π.)

The coefficients of $f(x)$ decay like $1 / k$ because of the two jumps.
(c) The coefficients of $d f / d x$ are

$$
d_{k}=i k c_{k}=\frac{i k}{2 \pi(1+i k)}\left(1+(-1)^{k} e^{-\pi}\right) .
$$

As $k \rightarrow \infty$ they do not approach a constant (which would be 1 , coming from $\delta(x)$). Instead the limiting pattern alternates between $1+e^{-\pi}$ and $1-e^{-\pi}$, because $f(x)$ has two jumps.
2) (33 pts.) (a) Can you complete this 4 -step MATLAB code to compute the cyclic convolution $f \circledast g=h$? I suggest fhat, ghat, hhat for their transforms.

1. fhat $=f f t(f)$
2. ghat $=\mathrm{fft}(\mathrm{g})$
3. hhat = fhat .* ghat
4. $\mathrm{h}=$ ifft(hhat)
(It is equally possible to start with the inverse discrete transform ifft. The only difference will be a factor of N somewhere, which I forgive! If you don't know MATLAB notation for commands 2, 3, 4 you can use words. MATLAB's fft(f) and ifft(f) automatically determine the length of f.)
(b) Suppose each of your quiz grades is a random variable (don't know how I thought of this). The probability of grade j on each quiz $(j=0, \ldots, 100)$ is p_{j}. The "generating function" for that quiz is $P(z)=\sum p_{j} z^{j}$. What is the probability s_{k} that the sum of your grades on 2 quizzes is k ? Give a nice formula for $S(z)=\sum s_{k} z^{k}$.
(c) The chance of grade $j=(70,80,90,100)$ on one quiz is $p=(.3, .4, .2, .1)$. What is the expected value (mean m) for the grade on that quiz? Show that this quiz average m agrees with $d P / d z$ at $z=1$. What are the probabilities s_{k} for the sum of two grades? Give numbers or a MATLAB code for the s_{k}.

Solution.
(b) The two grades are i and j with probability $p_{i} p_{j}$. Looking at all pairs that add to k,

$$
s_{k}=\sum_{i+j=k} p_{i} p_{j}=\sum p_{i} p_{k-i} \quad \text { and } \quad s=p * p .
$$

The convolution rule (multiplying polynomials is convolution of coefficients) says that $S(z)=(P(z))^{2}$.

* I should have worded this problem more clearly.*
(c) The expected value (the mean m) is

$$
(.3)(70)+(.4)(80)+(.2)(90)+(.1)(100)=81 .
$$

This is the derivative at $z=1$ of

$$
P(z)=(.3) z^{70}+(.4) z^{80}+(.2) z^{90}+(.1) z^{100}
$$

For the probabilities s_{k}, part (b) says that we have to convolve $p * p$. Noncyclic convolution is conv (p, p) - or pad p by extra zeros and use the cyclic code in part (a) — or compute $(3421)^{2}$ without carrying:
$\begin{array}{lllllll} & & & & 3 & 4 & 2 \\ & 1 \\ & & & 3 & 4 & 2 & 1 \\$\cline { 3 - 7 } \& \& \& 3 \& 4 \& 2 \& 1\end{array}$]$
3) (37 pts.) (a) The hat function $H(x)=1-|x|$ for $-1 \leq x \leq 1$ has height 1 and area 1 and integral transform $\widehat{H}(k)=(2-2 \cos k) / k^{2}$. Find the transform $\widehat{R}(k)$ of the roof function $R(x)$:

$$
R(x)=\text { box }+ \text { hat }=2-|x| \quad \text { for }-1 \leq x \leq 1, \quad 0 \text { else. }
$$

(b) What is the value of $\widehat{R}(k)$ at $k=0$ and how does this connect to the graph of the roof?
(c) Suppose $R(x)$ is the response of a sensor to a point source $\delta(x)$ at $x=0$. The sensor is shift-invariant (shifted response when source is shifted). The output F from a distributed source $U(x)$ is the convolution $F=$ $R * U$. Describe how to find $U(x)$ if you know $F(x)$.
(d) There could be a difficulty with your solution method in part (c). That would arise if $\quad=0$. For 1 point, does this difficulty appear in this example?

Solution.
(a) The box on $[-1,1]$ has transform $\left(e^{i k}-e^{-i k}\right) / i k=2 \sin k / k$. Then $R=\mathbf{b o x}+$ hat has

$$
\widehat{R}=\widehat{\mathbf{b o x}}+\mathbf{\text { hat }}=\frac{2 \sin k}{k}+\frac{2-2 \cos k}{k^{2}}
$$

Note: The $1 / k$ decay rate comes from the jumps in the box function. The $1 / k^{2}$ terms come from corners in the hat.
(b) $\widehat{R}(0)=3$ because the area under $R(x)$ is $\int_{-1}^{1} R(x) e^{0 x} d x=3$.
(c) Take transforms of $F=R * U$ to find $\widehat{F}=\widehat{R} \widehat{U}$. Then $\widehat{U}=\widehat{F} / \widehat{R}$. Invert this transform to find $U(x)$.
(d) There is a difficulty if $\widehat{R}(k)=0$ for any frequencies k. This does appear in the example when $k=2 \pi, 4 \pi, \ldots$

