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PROFESSOR STRANG: OK, so this is the second last lecture on trusses. Then we've 
got a holiday on Monday. And then after that we'll be into Chapter 3. I thought I'd 
write down just in case it's use to you, the four problems that I intend to include with 
the next homework. That won't be due for quite a while, a week from Monday. So 
these will be the problems on trusses that come from particular trusses drawn in the 
book. And then there'll be some problems from the new material, that we do next 
week. So trusses and really, there's two main jobs for today. One is to identify this 
matrix A, the strained displacement matrix or the stretching matrix. How far do the 
bars stretch? Everybody remembers A is going to come in this step if we have 
displacements then of the nodes like this would be like a u_1, this would be a u_1 h 
and a u_1 v, this would be a u_2 h and a u_2 v, so there are four movements of the 
ends of the truss and of one particular bar, and then we'll stretch that bar. And the 
question, is how much? 

So that will be one row of A. So if we follow one bar, you remember in the matrix A, 
there's going to be a row for every bar. So a row for each, row of A. For each bar. 
And if we track down one of those rows, we'll have the idea. And then of course at 
the end we'd maybe be constructing A without, sort of a free-free A. And then at the 
end, any fixed displacements that will knock out columns of A. So that's one job. And 
then to see, so the A is going to be a little more messy. It's because we're in two 
dimensions. So compared to the network problems, and and the line of springs, now 
we have more happening. We've got more columns because every node has now two 
unknowns. A horizontal and vertical. So A is kind of bigger. And therefore A 
transpose C A, you might think, it's going to be hard to see what's going on. But 
you'll see the right way to look at A transpose C A is a bar at a time. That's the nice 
fact about A transpose C A, I might focus on that first. 

And then comes the fun part. I'll draw some more trusses, that may or may not have 
mechanisms. They may or may not be stable. And we can try to identify the 
mechanisms. Actually, as before. We'll do it by engineering instinct rather than by 
solving. I mean, in principle, we could always use elimination. Or ask MATLAB or any 
other system to do it, and look for the solutions to Au=0. And decide are the 
columns of A independent. In that case the truss is stable. This matrix is invertible, 
we know all the good possibilities. And then there's the more interesting possibility, 
of having some solutions to that. In which case that matrix will be singular. There'll 
be some modes in our big system that will cause it to fail. But it's kind of fun to find 
those. OK, while I've written A transpose C A, may I remind you about a good way to 
do that multiplication. OK, so imagine I'm just putting a number. Here's going to be 
the matrix A. So the matrix A will have a bunch of rows, row one, row two, so on. 
These rows will correspond to bar one, bar two, and bar three. OK. 
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OK, then we have C, so that's a square matrix. That each bar has a spring constant, 
so c_1, c_2, c_3, and then we have A transpose. And those rows, or columns of A 
transpose. So that's the sort of picture of A transpose C A, for a three bar, three bars 
only. But the point is made right here. There's a row of A for every bar. Right? 
Because our matrix A is m by n. If there are m bars, a row for every bar, and it tells 
us how far that bar is stretched. And we'll figure out what its entries are. That's our 
main job. I'm just looking ahead. Suppose we've got that row. And that row, and 
that row. So a row for every bar. Now, here I've taken three bars. Now, how do I 
multiply those matrices? Well, I can do it different ways. But here's a cool way to do 
it. Just the way I want to point out is column times row. If you multiply matrices 
you're allowed to, the effective c_1, c_2, c_3 is going to be very simple. So I'm 
really paying attention here to A transpose A. If I want to multiply A transpose A, I 
can do row times column as usual and get one number. Or I can do column times 
row and get a whole little matrix. And that's the bar one matrix. It's the element 
matrix, and that's how finite elements will be assembled, and that's why I should 
keep mentioning this point. 

So the way to do that column times row thing, and then of course that c_1 just 
multiplies that row, that'll be c_1. Row one, transpose, that's the column, times row 
one. That's what's coming from bar one. That column multiplies the c_1 and that 
row. You see how nice, that's the element matrix associated with the first bar. And 
then there'll be a second column times the c_2, times the second row. So plus c_2, 
row two, transpose row two. That's a matrix again. Plus c_3, row three transpose. 
Row three. I focus on that because you don't think of this as a way to multiply 
matrices, but it's really a nice thing to notice. And it's better to notice it now when 
we have three bars or something, than in a big finite element code. Yeah. So this is, 
just if I complete it, complete this thought, this I would call up a one bar matrix. 
That's the matrix A transpose A if there's only one bar. Actually, one of the problems 
at the end of this section is find the element matrix for one bar. And I guess it's 
about what we're going to get to when we do that one bar. Do you remember what it 
was in the, just to connect this thought, what was the little matrix? In the case of 
networks? So in the case of networks, there was just one unknown for each, not two. 
So for networks, just, I'm just going to put down the, and you'll recognize it 
immediately. The little element matrix was the c for that. And there was an 1, -1, -1 
what? Do you remember that guy that was the -1, 1 from a row? -1, 1 from a 
column? 

So this was exactly c times the -1, 1 from the column times the -1, 1 from the row. 
That's where this simple little matrix came from. And you remember that the, so 
what's involved in creating this big A transpose C A is just create all these little 
pieces. Which are like this, but they're going to be a little bigger. Fact, in a minute 
I'm going to ask you what size they'll be. Well, they're really big matrices. There are 
a whole lot of zeroes there that I didn't even put. Zeroes are there for rows and 
columns that aren't touching this particular edge. And again, this matrix. There'll be 
all kinds of zeroes at A. Because a typical row of A, bar one, is going to have non-
zeroes only for the, yeah what's the size? How many non-zeroes in a typical row of 
A? Getting the count right first is like half the battle. How many non-zeroes in a 
typical row of a? This was the network case where we had a couple of nodes. And 
they were connected. And we had an unknown at each end. So two unknowns were 
involved. The little matrix was two by two. It properly has lots of zeroes for all the 
other nodes that are not involved. And then that matrix kind of gets, assembled is 
the word I think usually used. All these little guys get assembled, you know, pasted, 



stamped, I hear the verb sometimes now. Take these little matrices for this little 
element. And stamp them into the big A transpose C A. This is the c_1, so this gives 
the c_1's in the matrix. And the c_2's 2 and the c_3's. Alright. 

Now, just before we, I'm like doing this preliminary, before I write down anything, 
the exact row. What's the size of, for trusses, how many non-zeroes in a row of A? 
So that's my question. How many non-zeroes in a typical row, like for that bar, non-
zeroes in a row of A? So A is the matrix that tells us how much, that row of A is the 
row that tells us how much this bar stretched when this moved along by u H 1, and 
up by you u V 1, and this moved along by say, u H 2, and up by u V 2. Well, I've 
written all those in. So that you can tell me this number. How many? What's your 
guess? When I tell you, you'll say of course. How many u's are involved in the 
stretching of that bar? Four. Four. Exactly. Instead of one at each end, we have two 
at each end. So the answer is four. How many, the answer is four. And now the only 
remaining question is, what are they? What are those four numbers? The four non-
zeroes in the row? So let me just answer that. They are, so here is that row. So we 
the two non-zeroes associated with it. Well, the way I've numbered these nodes one 
and two. Since I've numbered them one and two, the non-zeroes are going to come 
right at the start. And then a whole lot, then this is all going to be zero after that. 
Because those will be nodes three, four, or five, whatever that don't involve bar one. 
So bar one just connects node one to node two. Now, what do you think? Well, let 
me put in the key quantity here. 

This bar is at an angle. It's at an angle theta. So there's a theta. Angle theta. OK. 
And so that angle is going to enter these things. In fact, here's what you get. You 
get, I think if I put the one up there and the two down there, let's see. What am I 
thinking now? I'm saying if u 1 H is positive, that's going to stretch the bar. That's a 
positive stretching. So I'm expecting a positive u 1 H to give me, I'm expecting that 
sort of to come in with a plus sign. Now suppose the bar is horizontal. Suppose the 
bar is horizontal, then how much does the u 1 H stretch it? It stretches it by the 
whole u 1 H, right? If the bar was horizontal, so theta equals zero. I'm just doing 
these, we got to sort out this theta angle stuff. So here's my thing. If the bar 
happens to be horizontal, then that stretching by u H 1, will completely stretch the 
bar. If the bar happened to be, yeah yeah. And of course, this way. So that for a 
horizontal bar, I'll just be back to this step. I'll have a one and a minus one u, oh 
yeah, remind me about that. Why doesn't u vertical, for a horizontal bar like this, 
why does this one not stretch the bar? You remember that from last time, that was 
the little bit of trig that we did when we were forced ourselves to stay linear. So we 
dropped the second order correction, that would come from going this way. Right? 

I mean you must have noticed, like walking? Suppose you want to walk from here to 
the end of the bar, OK? Well, if somebody moves the end of the bar forward, you 
have to take those extra steps. The bar really stretches. But, if somebody moves the 
bar this way, then the extra bit of length is much less. In fact, it's zero to first order. 
This is like taking shortcuts when you walk across the courtyard. So when the angle's 
theta, I'm only expecting a one and a minus one. On the horizontal. And zeroes on 
the vertical. OK, now I'm ready to write it. I think when the angle's theta, when the 
angle's theta, any theta, that was when the angle was zero, I think we get a cos 
theta. Doesn't your instinct say that this is on the u_1, u horizontal 1. And then the u 
vertical 1, tell me what these should be. And then we'll make, what do you suppose 
is the entry, second non-zero, the one that corresponds to a vertical movement. 
Here it would be, for a horizontal bar when theta is zero, I'm going to see a zero 
there. 



But if the bar is at an angle like this, what am I going to see? Everybody's going to 
get it right? What do I put in there? Sine theta. What else could it be? Right, OK, 
sin(theta). And now what about the next guy, the other end of the bar? u H 2 and u 
V 2, those are the other two non-zeroes. What your guess for u 2 H, u H 2? If I 
move this forward, What's the change in length of the bar? What would your guess 
be that goes into there? Say it again? -cos(theta). -cos(theta), right, yeah. The 
movement of the other end, like if I move this guy a little bit to this side. That will 
shorten the bar. Forget about that one. If I move this over, the bar becomes shorter. 
And the cosine tells me the key number there, how much it becomes shorter. If the 
bar was horizontal, the cos(theta) was one, it counts a hundred percent. If the bar is 
vertical, and I move it horizontally, it comes zero percent. Because the linearity says 
there was no first order change. And now tell me the final non-zero entry. And I see 
I didn't leave much room for all the zeroes. 

OK, what's the u 2 V entry? -sin(theta), of course. And then come all the zeroes, four 
whatever other joints are not involved with bar one. So let me, maybe to make this 
picture best, I should move that over to where it belongs. Now, if I add up along the 
bar, add up the four numbers there, what do I get? Zero. You expected that, right? 
In fact, if I add just that and that I get zero. If I add that and that I get zero. Just 
the way I got zero here. In the incidence matrices. The column of all ones is certainly 
going to solve Au=0. Unless the supports remove those, of course. If the supports 
don't allow all ones because some have to stay at zero, then I could have a stable 
truss. OK, that's a typical bar. A typical row. That's a typical row. OK, and now 
maybe while I'm on the same subject, what is the size, what is this thing look like 
now? This is in A. This is in a matrix A, and now I want to ask you before I even 
come back to all this stuff, what about in A transpose A? In A transpose A, A 
transpose C, it the whole deal. The element for the little matrix, the element matrix, 
can I call it that? Or the one bar matrix, call it the one bar matrix. Will be, is what? 

So I want this, it would be typical. c_1, row one. Transpose row one, that's the 
typical guy. And how many non-zeroes in that? Multiplying a row. Sorry, multiplying 
a column that has four non-zeroes times a row that has four non-zeroes times a 
number, which is just fine. How many non-zeroes are going to sit in this element 
matrix, this one-bar matrix? 16. 16 non-zeroes. And they're going to be, I have 
cosine, sine, minus cosine, minus sine, multiplying cosine, sine, minus cosine, minus 
sine. And all multiplied by c_1. So that's the matrix. And you see what it looks like. c 
squared, cs, so on. 16 guys. So we have four squared as our element matrix, where 
here we had two squared. And in finite elements, when you get to elasticity, and 
you've got triangles, you've got triangular elements, then there are three nodes 
involved. So you're up to higher numbers. But this gives you the idea. And 
remember that this four by four, the way I've done it, the way I've numbered it, one, 
two, happens to sit up in the upper left corner. Of A transpose C A. But can you sort 
of imagine how the code would be written? The code would be written, take each 
bar, and what do I have to know about the bar? 

Just imagine a code that would do trusses. Actually, the final problem that I'm not 
assigning in this section says what would the code be like? Can we just have a think 
about what the code would look like if we were to write it. What would the input 
have to be? For each bar, what input do I need? For this bar, I need to know, and for 
the whole truss. What do I have to tell, what's the information that I need for the 
whole truss? I have to know the positions of all of the joints, right? So I'd have to 
know the coordinates of that, x y, the coordinates of this one, x_1, y_1. For joint 



one, x_2, y_2. So I'd have to have a little list of what would that be? m by two? I 
don't know. n. n by two. I have n, what do I have now? Think of what information do 
I have to report about this truss? I guess I have N, capital N, joints. And I need two 
coordinates, x, y for each position. So that's N by two this. 

OK, and then for every bar, what do I need to tell it? What do I need to put in the 
code for a typical bar? I certainly have to put in the c for that bar. And what else do I 
need to know? I need to know which joints it's connected. Right? I have to tell the 
system that this bar is between two and one, one and two. I have to tell it which 
pair. So I guess I have a list of m bars, and for each bar I must tell the system the 
two node numbers, and the c, the stiffness. The constant for Hooke's Law. Right, do 
you see this picture? Just sort of visualizing, creating a code here. And then the code 
would do all this, oh, have I given enough information to find theta? Or do I have to 
import theta also? No. I told you the positions, so it'll figure out cos(theta) theta and 
sin(theta). It actually won't figure out theta, that's always a dumb thing to do find 
the actual angle. cos(theta) and sin(theta) is the quantities we want. So given that 
position, x, y and this position x_2, y_2, it would know cos(theta) and sin(theta). 
And having drawn his picture allows me to make once more the key point about 
small displacements. What's the angle of the bar after it's moved? After it's 
displaced? It was theta before it was displaced, and the angle after is theta. To first 
order, the angle doesn't change. Because these are little tiny movements of the 
ends. I've drawn them much bigger than they should be drawn. They're little, tiny 
movements of the ends so that the angle is not significantly changed. Otherwise 
we're into geometric nonlinearity and that stuff, that makes the problem much, 
much harder. 

OK, are you seeing sort of the picture? I guess what I haven't completely, I've really 
depended more on your intuition than on a calculation to say that these are the four 
non-zeroes. What did I ask you to do? I asked you to check that that was right in the 
extreme cases, like if theta is zero, the bar is horizontal, then we just have a one, 
zero minus one, zero vertical isn't happening. If the bar is vertical so that the angle 
is 90 degrees then we would have a zero, one, zerom minus one, everything's 
vertical. And the book draws a little picture, and computes. Computes delta l from 
these four small movements. And takes the leading term and sure enough it 
produces that row of the matrix. Gosh, I talk real fast. But do you think you could 
now create the stiffness? If you had a real truss, you could create the matrix A for it? 
C is simple, it's given to you. You could create A transpose C A? You might just want 
to write the command as A'*C*A or something. And let MATLAB do the thinking. But 
I wanted to just see what these, how this four by four piece appears in this product 
from each bar. The 16 non-zeroes will appear in different positions and you told the 
code what those positions are. You had to give the code a local to global picture. This 
is the local picture. Watch one bar. Then it has to fit in this big n by n matrix, and 
that means you have to know what joints was that bar connecting. So which 
positions do these 16 non-zeroes assemble into? That's some time devoted to a job 
that I actually don't plan to require you to do. Creating this truss problem. 

What I think is kind of more fun and that's these homework problems would deal 
with it, is part two of the lecture going back to mechanisms. And now thinking about 
more complicated trusses. We now in principle could find the solutions to Au=0 
because we now have constructed A, and we could get MATLAB to do the work or 
Python or whoever. But can I go to part two now and draw a truss and ask you about 
the mechanisms? Let's see. I guess somewhere in the problem set, but not one of 
the assigned ones is, start with those six bars. And six joints, so these are six joints. 



And OK, as it stands how many, that's a good question. As it stands, what's the 
shape of the matrix A? How many rows has it got? So as it stands, so I'll call it A_0, 
for no supports have been added. A_0, just the full matrix. Is what shape? six by 12. 
Good. Six by 12 is six by 12. OK, of course it's not stable. We know that. We haven't 
supported anything. So in a typical case, how many solutions to A, so I'm going to 
ask you how many solutions to Au=0? And what's your guess? Six. Got six 
equations, we've got 12 u's, 12-6, so this is going to be 12-6. And of course six 
solutions to that equation. It's what I would expect. There could be, it could be 
possible that the six equations are not independent. If they really dropped to five 
then this would bump up to seven, I don't think it's going to happen. 

Now, can you describe those six solutions, not with numbers, just with, tell me. I 
hope you can, because I can't right now. OK, three of them we know. So with no 
supports at all, what are three rigid motions? And what are they? The whole truss 
could move to the right, the whole hexagon. It could all move up, it could all rotate 
about one point. All three of those would be movements, displacements that don't 
stretch anything. OK, three rigid motions. Across, up, and rotate. OK, and I can get 
rid of those by supporting some nodes. But let me see, I don't know what's going to 
happen. When I describe this topic as the fun one in 18.085, it's more fun for you 
than for me. Because I draw something like that and I start worrying can I think of 
three, how many mechanisms to look for? Three. That's a big number. I bet you I 
can find one but you guys have got to, alright, tell me some mechanisms. Let me try 
to draw them. What would be one mechanism? Collapses, yeah, somehow. How shall 
I make it collapse? Can squeeze in, yeah, maybe that's the first one. This guy comes 
in, this guy, what does that do? I've got 15 minutes here, I could pull that board 
down and draw another one. What is this one here? Let's see, if that comes in, do 
these guys have to go up a bit? Yeah, because that angle's no 90 degrees. So we've 
got a first order change in this. So this comes in a little, this goes up a little, this guy 
maybe stays straight. Would you go for this, I mean please say yes? 

Something happens there, right? These things go in and those go out. Could you 
create the, I mean is this was A equal side, regular hexagon, you could put in all the 
numbers for all 12, I would be looking for 12 numbers. Six joints and they each have 
two u's, so that wouldn't be so simple but you could do it. So that would be one. 
Looking for number two. What would be another one? So sort of squeezing in like 
whatever. What do you think? Any others? Maybe that's possible. Maybe I just look 
at it, you think that would work? We could hope those were independent, but I 
wouldn't put my life on it. I have this squeeze in, this squeeze in and this squeeze in, 
I would worry a little bit. I can see another one. 

AUDIENCE: Half, for--

PROFESSOR STRANG: Fold it in half. 

AUDIENCE: Along, I guess that sort of gets into 3-D, but. 

PROFESSOR STRANG: Yeah, we've got to stay in the plane, right. I have instead of 
what, OK. 

AUDIENCE: [INAUDIBLE] 

PROFESSOR STRANG: Squeeze that out. Yeah. Good. Number two. And then I can 
see, here's one, here's an easy one to think of. Leave these three alone and just 



rotate these guys. Bring this down, right? Just bring these three vertically down, or 
something. You see why it's sort of, did you like that one alright? It seems simple to 
me, looking at it, just leave these guys in rotation, let this turn down. This turn 
down, let's say, and this go down. Maybe these would all drop by the same amount. 
Maybe. So anyway, whatever. Let's put some supports on them. And get these 
numbers down. So let's support, as usual, the bottom guy. OK, so different problem 
now I won't call that A_0, I'll call it A. I'll ask myself, is it stable or unstable? The 
matrix is now six by what? Eight, because I've taken away, I have four reaction 
forces, two at each support, horizontal and vertical. I've got four free nodes. And six 
by eight. Let me put in, so six by eight, what am I expecting now? Any rigid 
motions? No, no rigid motions now. How many solutions am I expecting? Two, I 
think. Probably two. How many mechanisms? Well, no rigid motions. So probably 
two mechanisms. Now, can we find two mechanisms? Alright, this is like more 
reasonable. We can see whether whether we get two mechanisms and whether 
they're really different. 

OK, what are the mechanisms now? These guys are fixed. So forget my little sketch 
here, and think again. What do you see? Alright, let's have one mechanism. What 
would one mechanism be now? There have to be two. What do you think? Sit on it. 
Alright, bring these guys down, and then these guys will go out, is that it? OK, so a 
number, mechanism number one, sit on truss. OK. Alright. Now, I don't know what 
number two is, that's why I'm taking time. 

AUDIENCE: [INAUDIBLE] 

PROFESSOR STRANG: Yeah. Or could we do this, could we bring these guys in and 
let's go up? It's the same thing. OK, so squeeze truss. Squeeze sides. Is that the 
same thing that I had, number one the same as two. Oh jeez, ok. Is that what 
everybody is agreeing with this? OK. So I didn't get, my number two was no good. 
OK. What's a better number two? Hold an edge? Like that one. I'm just doing what 
you say, I'm not. 

AUDIENCE: [INAUDIBLE] Just this guy, rotates like so. And this guy will rotate, and 
this guy. That looks pretty good to me. Good, is that correct? Say that one again? So 
the first one was when these two came down and these went out. Right, OK. And 
now your suggestion is, you picked on this guy and held it fixed. And then this one 
came down a little bit. It'll, of course, how will it move? It will move perpendicular, 
right? Small movement. The bar is not going to change length, that's the whole 
point, right? The bar is not changing length. So the movement must be, it must be a 
simple rotation. Around here. OK. Right, and of course again you might say well, the 
bar really did change length because that's not quite the same as that. But then 
again that's my second order basis. So that one came down, and what did this one 
do? Came down the same. OK, and this one it also moves. What is that? OK, so what 
am I going to call this one? Fixed one. Yeah. Fixed one node. And that makes sense. 
Fixed one joint, yeah. And then, and rotate the rest. I think that would be possible. 
Yep. 

OK, a small prize for anybody who, maybe handwritten, a picture of two really nice 
mechanisms. Somehow this one seems a little um-symmetric in a problem that so 
symmetric, so I would guess that somewhere along the line we could find a kind of 
more some symmetric one. But I don't see what it is right now. Can the whole thing 
rotate a little? Could that rotate, could the whole thing rotate? Yeah, maybe it could. 
This guy would go up, maybe that's possible. That's somehow got everybody into the 



action. So I'll put or rotate. OK, so you see what questions you get into. May I just 
draw a different truss? So those homework questions are other trusses. Here's one 
that I drew in the book itself. Yeah, may I draw this, I called it a treehouse. OK, so I 
have, so here's one that's actually in the book. And it's got a couple of bars going up, 
and one over. So that's the start. Then it's got a diagonal and that one. And then 
here comes the treehouse. OK, right. Well, just to get, let's again get the count right. 
So what's the matrix A for this treehouse? A is how many by how many? How many 
bars are you seeing here? One, two, three, four, five, six, seven, eight, eight bars. 
And how many unknown displacements? Ten. 

We got five joints that are not supported, and each one has two unknowns. So A is 
eight by ten. So I expect two mechanisms. OK, so again I'm looking for two 
mechanisms. OK, what's one? 

AUDIENCE: [INAUDIBLE] 

PROFESSOR STRANG: It's what? This guy just falls, right. This looks unfortunately 
very much like the treehouses that I built for my kids. Well, so linear algebra 
sentenced them to fall, right? OK, that's one. I probably propped it up with one more 
bar, but of course that wouldn't be enough, because it's got two mechanisms, so if I 
make it nine by ten I haven't saved the kids. OK, with eight by ten, what's the other 
mechanisms? The whole thing could turn the, nothing preventing turning here. They 
can't move but they could turn. So the whole thing could go over, right, the whole 
thing could just, that would be a horizontal movement of all five nodes. The 
horizontal of all five nodes. And again, slightly downwards, but that's a second order 
effect. OK, so that's the second truss. OK. So this is really like practice for discrete 
problems, for the problems of plane elasticity. And the point is that there are two 
unknowns for each point. If we have differential equations. So the differential 
equations of plane elasticity are not really simple. They're not really simple. And 3-D 
elasticity even more. Because the points are physical points and they can move three 
ways, and it gets quite interesting. And those are the major problems of 
computational mechanics. OK, let's say, holiday time and I'll see you next 
Wednesday for Chapter 3. Which moves to partial differential equations. 


