MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Total

Thank you for taking 18.085, I hope you enjoyed it.

1) (35 pts.) Suppose the 2π-periodic $f(x)$ is a half-length square wave:

$$
f(x)=\left\{\begin{aligned}
1 & \text { for } 0<x<\pi / 2 \\
-1 & \text { for }-\pi / 2<x<0 \\
0 & \text { elsewhere in }[-\pi, \pi]
\end{aligned}\right.
$$

(a) Find the Fourier cosine and sine coefficients a_{k} and b_{k} of $f(x)$.
(b) Compute $\int_{-\pi}^{\pi}(f(x))^{2} d x$ as a number and also as an infinite series using the a_{k}^{2} and b_{k}^{2}.
(c) DRAW A GRAPH of the integral $I(x)=\int_{0}^{x} f(t) d t$ from $-\pi$ to π. What are the Fourier coefficients A_{k} and B_{k} of $I(x)$?
(d) DRAW A GRAPH of the derivative $D(x)=\frac{d f}{d x}$ from $-\pi$ to π. What are the Fourier coefficients of $D(x)$?
(e) If you convolve $D(x) * I(x)$ why do you get the same answer as $f(x) *$ $f(x)$? Not required to find that answer, just explain $D * I=f * f$.
2) (33 pts.) (a) Compute directly the convolution $f * f$ (cyclic convolution with $N=6$) when $f=(0,0,0,1,0,0)$. [You could connect vectors $\left(f_{0}, \ldots, f_{5}\right)$ with polynomials $f_{0}+f_{1} w+\cdots+f_{5} w^{5}$ if you want to.]
(b) What is the Discrete Fourier Transform $c=\left(c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right)$ of the vector $f=(0,0,0,1,0,0)$? Still $N=6$.
(c) Compute $f * f$ another way, by using c in "transform space" and then transforming back.
3) (32 pts .) On page 310 the Fourier integral transform of the one-sided decaying pulse $f(x)=e^{-a x}$ (for $x \geq 0$ only) is computed for $-\infty<k<\infty$ as

$$
\widehat{f}(k)=\frac{1}{a+i k} .
$$

(a) Suppose this one-sided pulse is shifted to start at $x=L$:

$$
f_{L}(x)=e^{-a(x-L)} \text { for } x \geq L, \quad f_{L}(x)=0 \text { for } x<L
$$

Find the Fourier integral transform $\widehat{f}_{L}(k)$.
(b) Draw a rough graph of the difference $D(x)=F(x)-F_{L}(x)$ and find its transform $\widehat{D}(k)$. NOW LET $a \rightarrow 0$.

What is the limit of $D(x)$ as $a \rightarrow 0$?
What is the limit of $\widehat{D}(k)$ as $a \rightarrow 0$?
(c) The function $f_{L}(x)$ is smooth except for a \qquad at $x=L$, so the decay rate of $\widehat{f}_{L}(k)$ is \qquad . The convolution $C(x)=f_{L}(x) * f_{L}(x)$ has transform $\widehat{C}(k)=$ \qquad with decay rate \qquad . Then in x-space this convolution $C(x)$ has a \qquad at the point $x=$ \qquad -

