MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

FALL 2002 QUIZ2 SOLUTIONS

Problem 1 (40 points)

This question is about a fixed-free hanging bar (made of 2 materials) with a point load at $x=\frac{3}{4}$:

$$
\begin{aligned}
-\frac{d}{d x}\left(c(x) \frac{d u}{d x}\right) & =\delta\left(x-\frac{3}{4}\right) \\
u(0) & =0 \\
w(1) & =0
\end{aligned}
$$

Suppose that

$$
c(x)= \begin{cases}1, & x<\frac{1}{2} \\ 4, & x>\frac{1}{2}\end{cases}
$$

a) (i) At $x=\frac{1}{2}, u$ and w are continuous. Then u_{x} must have a jump (ii) At $x=\frac{3}{4}, u$ is continuous (as always) while w jumps by 1 . We should expect $\frac{d u}{d x}$ to have a jump unless such jump is "accidentally" 0 .
b)

$$
w(x)=\left\{\begin{array}{c}
A, 0<x<\frac{3}{4} \\
B, \frac{1}{2}<x<\frac{3}{4} \\
C, \frac{3}{4}<x<1
\end{array}\right.
$$

where the three constants A, B, and C are determined from the boundary condition $w(1)=0$, resulting in

$$
C=0
$$

continuity of w at $x=\frac{1}{2}$, resulting in

$$
4 B-A=0
$$

and $[w]_{-}^{+}=-1$, resulting in

$$
4 C-4 B=-1
$$

This system with three equation and three unkowns is easily solved, yielding $A=1, B=\frac{1}{4}, C=0$. Summarizing:

$$
w(x)=\left\{\begin{array}{l}
1,0<x<\frac{3}{4} \\
\frac{1}{4}, \frac{1}{2}<x<\frac{3}{4} \\
0, \frac{3}{4}<x<1
\end{array}\right.
$$

c)

$$
u=\left\{\begin{array}{r}
x+D, \quad 0<x<\frac{1}{2} \\
\frac{1}{4} x+E, \frac{1}{2}<x<\frac{3}{4} \\
F, \quad \frac{3}{4}<x<1
\end{array}\right.
$$

where the three constants D, E, and F are detemined from the boundary condition $u(0)=0$:

$$
D=0
$$

continuity of u at $x=\frac{1}{2}$:

$$
\frac{1}{4} \times \frac{1}{2}+E-\frac{1}{2}-D=0
$$

and continuity of u at $x=\frac{3}{4}$:

$$
F-\frac{1}{4} \times \frac{3}{4}-E=0
$$

We find that $D=0, E=\frac{3}{8}, F=\frac{9}{16}$ and so

$$
u=\left\{\begin{array}{r}
x, 0<x<\frac{1}{2} \\
\frac{1}{4} x+\frac{3}{8}, \frac{1}{2}<x<\frac{3}{4} \\
\frac{9}{16}, \quad \frac{3}{4}<x<1
\end{array}\right.
$$

Problem 2 (30 points)

a)
(i) It is easy to show that

$$
\left(\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}\right)(x+i y)=1
$$

Therefore,

$$
\frac{1}{z}=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}
$$

and the real and imaginary parts are

$$
\begin{aligned}
u(x, y) & =\frac{x}{x^{2}+y^{2}} \\
s(x, y) & =\frac{-y}{x^{2}+y^{2}}
\end{aligned}
$$

(ii) In polar coordinates we have

$$
\frac{1}{z}=\frac{1}{r e^{i \theta}}=\frac{1}{r} e^{-i \theta}=\frac{1}{r}(\cos \theta-i \sin \theta)
$$

Therefore,

$$
\begin{aligned}
& u(r, \theta)=\frac{1}{r} \cos \theta \\
& s(r, \theta)=-\frac{1}{r} \sin \theta
\end{aligned}
$$

b) The curve curve $u(x, y)=\frac{1}{2}$ has the following equation:

$$
\frac{x}{x^{2}+y^{2}}=\frac{1}{2}
$$

This equation is equivalent to

$$
x^{2}+y^{2}-2 x=0
$$

or

$$
x^{2}-2 x+1+y^{2}=1
$$

or, finally

$$
(x-1)^{2}+y^{2}=1
$$

Similarly, the curve $s(x, y)=\frac{1}{2}$ is given by

$$
x^{2}+(y+1)^{2}=1
$$

The curve $u(x, y)=\frac{1}{2}$ is a circle of radius 1 centered at the point $(1,0)$ while the curve $s(x, y)=\frac{1}{2}$ is a circle of radius 1 centered at $(0,-1)$.
c) On the part $u(x, y)=\frac{1}{2}$ simply take $u_{0}=\frac{1}{2}$. Now let's look at the other part. It is orthogonal to the equipotentials of u. In other words, u does not change in the directions orthogonal to the part. Analytically, this is expressed as $\frac{\partial u}{\partial n}=0$ or $w \cdot n=0$.

Problem 3 (30 points)

a). We have

$$
\begin{aligned}
u_{x} & =\frac{\partial^{2} F}{\partial y \partial x} \\
u_{y} & =\frac{\partial^{2} F}{\partial y^{2}} \\
s_{x} & =\frac{\partial^{2} F}{\partial x^{2}} \\
s_{y} & =\frac{\partial^{2} F}{\partial x \partial y}
\end{aligned}
$$

It can be immediately observed that $u_{x}=s_{y}$ since partial derivatives commute. Also, $u_{y}+s_{x}=\Delta F=0$ since F is harmonic.
b). The test for "having originated from a potential" is "curl v " $=\frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}=0$. Reconstructing the potential is a little less straightforward.
(i) $v(x, y)=\left(x^{2}, y^{2}\right)$: Yes, $u=\frac{1}{3} x^{3}+\frac{1}{3} y^{2}, \Delta u=2 x+2 y \neq 0$
(ii) $v(x, y)=\left(y^{2}, x^{2}\right)$: No.
(iii) $v(x, y)=(x+y, x-y)$: Yes, $u=\frac{1}{2} x^{2}+x y-\frac{1}{2} y^{2}, \Delta u=0$
c) (i)

$$
u(r, \theta)=\frac{1}{2}+r \cos \theta+r^{2} \cos 2 \theta
$$

(ii)

$$
u(r=0, \theta)=\frac{1}{2}
$$

(A harmonic function equals to the average of its neighbors!)

$$
u\left(r=\frac{1}{2}, \theta=0\right)=\frac{5}{4}
$$

Miscellaneous

Problem 1d) This is what the solution would be if we were to account for the weight P of the bottom part of the bar

$$
w(x)=\left\{\begin{array}{c}
G, 0<x<\frac{3}{4} \\
-P x+H, \frac{1}{2}<x<\frac{3}{4} \\
-P x+I, \frac{3}{4}<x<1
\end{array}\right.
$$

The same three conditions will determine the constants: $w(1)=0$:

$$
I-P=0
$$

continuity of w at $x=\frac{1}{2}$:

$$
4\left(-\frac{1}{2} P+H\right)-G=0
$$

and the jump in w at $x=\frac{3}{4}$:

$$
4 I-4 H=-1
$$

The resulting system determines the unknown constants: $G=6 P+1, H=P+\frac{1}{4}$, and $I=P$:

$$
w(x)=\left\{\begin{array}{c}
6 P+1,0<x<\frac{3}{4} \\
P(1-x)+\frac{1}{4}, \frac{1}{2}<x<\frac{3}{4} \\
P(1-x), \frac{3}{4}<x<1
\end{array}\right.
$$

