MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Grading 1

1) (34 pts.) A point load at $x=\frac{1}{3}$ hangs at the same point where $c(x)$ changes from $c=1$ (for $0<x<\frac{1}{3}$) to $c=2$ (for $\frac{1}{3}<x<1$). Both ends are FIXED.
(a) Solve for $u(x)$ and $w(x)=c(x) u^{\prime}(x)$:

$$
-\frac{d}{d x}\left(c(x) \frac{d u}{d x}\right)=\delta\left(x-\frac{1}{3}\right) \quad \text { with } \quad u(0)=u(1)=0
$$

(b) Draw the graphs of $u(x)$ and $w(x)$.
(c) Divide the hanging bar into intervals of length $h=\frac{1}{6}$ (then $c(x)$ changes from 1 to 2 at $x=2 h)$. There are unknowns $U=\left(u_{1}, \ldots, u_{5}\right)$ at the meshpoints. Write down a matrix approximation $\boldsymbol{K} \boldsymbol{U}=\boldsymbol{F}$ to the equation above. Take differences of differences (each difference over an interval of length h).
2) (33 pts.) This truss doesn't look safe to me. Those angles are 45°. The matrix A will be 6 by 8 when the displacements are fixed to zero at the bottom.

(a) How many independent solutions to $e=A u=0$? Draw these mechanisms.
(b) Write numerical vectors $u=\left(u_{1}^{\mathrm{H}}, u_{1}^{\mathrm{V}}, \ldots, u_{4}^{\mathrm{H}}, u_{4}^{\mathrm{V}}\right)$ that solve $A u=0$ to give those mechanisms in part (a).
(c) What is the first row of $A^{\mathrm{T}} A$ (asking about $A^{\mathrm{T}} A$!) if unknowns are taken in that usual order used in part (b) ?
3) (33 pts.) (a) Is the vector field $w(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$ equal to the gradient of any function $u(x)$? What is the divergence of w ? If $u(x, y)$ and $s(x, y)$ are a Cauchy-Riemann pair, show that $w(x, y)=(s(x, y), u(x, y))$ will be a gradient field and also have divergence zero.
(b) Take real and imaginary parts of $f(x+i y)=\left(x+i y+\frac{1}{x+i y}\right)$ to find two solutions of Laplace's equation. Write those two solutions also in polar coordinates.
(c) Integrate each of the functions $u=1, u=r \cos \theta, u=r^{2} \cos 2 \theta$ around the closed circle of radius 1 to find $\int u d \theta$. How could this same computation come from the Divergence Theorem?

