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PROFESSOR STRANG: OK, thank you for coming today. The day before 
Thanksgiving. Day before my birthday, actually. So it's a special day. Everybody gets 
an A for showing up. Even you. So, let's see. Last time, I wrote down these formulas 
for the Fourier integral transform. And I thought I'd just write them again so you 
kind of photograph them and remember them. They're easy to remember. As 
always, you take the function, you multiply by e^(-ikx), and you integrate. To get 
the amount - so k is my frequency variable. It could well have been omega or some 
other variable. I stayed with k because it was k in the Fourier series. So that's the 
calculation which as always, I mean, these are integrals that we may be able to do if 
the function is especially nice, or we may not. But that's the formula. And then to 
reconstruct the function, we combine all they e^(ikx)'s in that amount to get f(x) 
back. OK, nice formula. 

So I did one example last time, and now could I just double it up? This is also in the 
textbook and so this is now going to be an even function. Last time the example I 
did was zero, up to x=0. This time I'll make it symmetric, make the function even. 
And then I have two pieces. In the integral. And if you remember what it was, you 
remember that this, I'll just remind you what we did. We wrote that it's e^-(a+ik)x. 
That was clear. And then when we integrated we got that same function divided by -
(a+ik). a And then we put in the limits. And the answer was, let me maybe write the 
answer down here. Was just at x equal infinity the limit was zero because this thing 
is tailing off. At x=0 this is one. It comes in with a minus because that's the lower 
limit. So it was 1/(a+ik) for the first half. And we were not surprised to see this 1/k 
because the first half all by itself has that jump, from zero to one. So we see that 
jump reflected in slow decay. 

Alright, but now I'm making it even. What are you going to guess for the rate of 
decay of f hat of k for this function? This function no longer has a jump. But it does 
have - I don't know were we saying ramp, or corner? This is not a smooth point 
here, because the derivative going up is plus a, so I'll just put a circle right, the 
derivative is a e^(ax), and at x=0 that would be plus a going up. And here the 
derivative is minus a, e^(-ax). Put in x=0, and the derivative coming down is minus 
x. So there's a jump in the derivative. So what, just before we see it, what will you 
expect for the rate of decay of the transform? 1/k to what power, now? So it didn't 
have a jump, a jump was 1/k. This has a jump in the derivative, so we're expecting 
1/k squared. k squared, it'll be one order smoother. OK, you can easily see that 
happen. Because this part, well this is just e^(a-ik)x, which I'm going to integrate to 
get this thing over a-ik. And I'm going to plug in the limits minus infinity and zero. 
And at minus infinity I'll get nothing, this e^(ax), that minus infinity will be zero. 
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Where the function starts. Way down at zero. So and at x=0, this is a one. So I just 
get 1/(a+ik). Over a minus, thank you. Right, over a minus. 

And somehow it can't be an accident that this is the complex conjugate of that 
somehow. That's not a surprise. OK, so let's put those together into a single fraction 
and see what we have. So the denominator of that fraction will be this times this. 
And that's the most basic multiplication of complex numbers. That one times its 
conjugate gives me what? It gives me an a squared. And what else? a+k squared 
because i times minus i is plus k squared, and no imaginary part. There's a plus i k a 
and a minus i k a, all we're seeing here is the sum of squares. The usual z times z 
bar. And in the numerator, let's see. When I put it over this, so this was putting it 
over this common denominator. So I should have an a-ik going up on top there. And 
an a+ik going up on top here. Right? Those are my two fractions. That over this, and 
that over this. And now that numerator simplifies, oh look it's great. I'm getting a 
real answer. And because the minus ik and the plus ik cancel, and it's just the two 
way. And probably no surprise that somehow that that's the jump in slope. That 
must have something to do with that 2a. 

So we got a real even, Fourier f hat from my real even f. And it decays like k 
squared. OK, so that's another good example. A very useful example. Right. I could 
add other examples. One quite, before I use that in application, let's do just a few 
more examples. Suppose f(x) is the delta function. What's f hat of k? Can you just 
plug in f(x)=delta(x) here? Do that integration, and what does f hat of k come out to 
be? One. Because if it's a delta function in there at x, at x=0 the spike is at x=0, so I 
plug in x=0, I get one. So we're kind of, we'd be surprised if it wasn't a constant, 
right? A delta function in physical space goes in, has all frequencies in equal 
amounts. And it's a constant in frequency space. 

Then there's one more that takes a little trick to do, but it's a very neat one. f(x) is e 
to the minus x squared over two. Do you recognize that as an important function, e 
to the minus x squared or it usually has that e to the minus x squared over two or 
sometimes an e to the minus x squared over two sigma squared, a rescaling? But 
this would be the bell shaped curve. The bell shaped curve. It decays, very quickly 
the variance, because that's a two and not a two sigma squared, the standard 
deviation is one here. The variance is one. So it's a bell shaped curve that has about 
2/3 of its area between minus one and one. This is the all important function for 
probability. The normal distribution, the Gaussian, both of those words are used, it's 
the most important probability distribution. I need a one over square root of 2pi to 
make the total probability be one. But let me just leave it there. That's a very, very 
important function. It's also going to be important in the heat equation. In math 
finance, shows up all over the place. And its integral would not be easy to do from 
zero to one. The integral of that function, from zero to one, we have tables of it. To 
the nth place. But so there's no simple, elementary function whose derivative is this. 
That x squared is what's making the integral tricky. 

So from zero to one, we just have to give it a name. So, error function. This would 
be ERF, error function, the integral of that thing correctly normalized. I'm just 
saying, important, important function. And it turns out that integrals from minus 
infinity to infinity can be done so beautifully by some trickery. We can find the 
transform of this. We can find the transform of this, we can do this integral from 
minus infinity to infinity, where we could not do it from zero to one. So I'll just write 
down the answer for this guy. Only because it's such a key example. It's some 
constant that involves 2pi times e to the minus k squared over two. Boy, that's 



pretty amazing. Right, the Fourier integral transform, f hat of k, has the same form 
as the function. And of course this function is infinitely smooth. So its transform to k 
is infinitely fast. Yeah, there's no problems like one over k squared here, there are 
no bumps in the and bell shaped curve. 

So I won't push that example except I'll use it. What else should I say just to, like, 
emphasize that this is such an important distribution in probability? Why is it 
important in probability? That's the question. Why does everybody assume if you can 
get away with it and don't have any natural alternative, everybody assumes that 
noise, whatever, is coming with a normal distribution. So, in other words, with a 
sigma squared in there. So a normal distribution, that has mean zero because it's 
absolutely centered at the origin and it has variance one, but I could change the 
variance and that would just spread out or tighten the bell shaped curve. Why is the 
bell shaped curve so important? That's certainly, we're not going to launch into 
theory of probability but it's the central limit theorem. So let me just use those 
words. The central limit theorem that says that if I start with other probability 
distributions, like I'm flipping a coin. I flip a coin a million times. Then the mean, and 
let's say zero for tails, one for heads. OK, so I flip, flip, flip. Well, the mean of that, 
the expected mean is what, half a million, right? Half tails, half heads. So if I give 
zero for tails, one for heads and flip a million times the mean would be about half a 
million. And then, so let me center the mean. I could have centered it by taking 
minus one and one. That would have been smarter. Minus one and one. Minus one 
for tails, one for heads would have had a mean of zero. And then it would be natural 
if I have a million of these to divide by a thousand, I think. Of course, the answer 
won't be zero, right? If I do a million flips it's not going to come out exactly half a 
million and half a million. 

I'm remembering. I used to have a long discussion with a nice guy in college. He ran 
for Mayor of Boston, actually. But he had the idea that after a million flips, suppose 
there had been more heads than tails. Then the next flip, he figured, was more likely 
to be tails. I couldn't convince them that this was not mathematically the right thing 
to think about. And all I did was say don't go to Las Vegas. I mean, if you're thinking 
that way save your money. So, anyway. But this is much studied. The variation what 
that curve looks like, that's quite interesting. But my point is, that as the number 
gets bigger and bigger and we scale it properly, the distribution will approach the 
norm. All sorts of distributions. If I just repeat and repeat experiments and scale it, 
the central limit theorem says you're always going to the normal distribution. So 
that's highly important. OK, and it comes up different places. And it's quite a neat 
function. OK, so that's some examples. 

Now, let me use, like every topics that I introduce, I want to find a use for. So now, 
can I start on this one? Constant coefficient differential equations. I'm going to write 
down a differential equation, which will look pretty much like the ones we started 
this course with. And I could, well, let me write it down. Minus d second u/dx 
squared, we're used to that. Now let me put in an a^2*u. Which is a lower lower 
order term, we could deal with that. Equals sum f(x). And now, because I want to do 
Fourier integrals, I'm thinking all x. We're on the whole line. Instead of the interval 
(0,1) where I might use Fourier series and have sine series or cosine series, 
depending on the boundary conditions. Here, the boundary condition is just 
everything drops off at infinity. And minus infinity. So all these functions we can do 
these integrals. OK, so there's a good question. What's the solution? We could tackle 
it, but I want to suggest to use Fourier. So it's not the only way, but it's one way to 
see it. So now if I use, what do I mean by using Fourier? It means I'm going to take 



the Fourier integral transform of every term. So when I take the Fourier transform of 
the right-hand side, I'm going to get f hat of k, whatever. This is known, of course. 
This guy is given. That's the source term. And u is the unknown. OK, so I'm going to 
take the Fourier transform of every term, well this is, a is a constant. a had to be a 
constant, or I couldn't do, you know if a depended on x this would be some 
multiplication and the transform would be a mess. Fourier applies when you've got 
constant coefficients and nice boundary conditions. And here our boundary 
conditions are nice, they just go to zero fast. 

OK, so the transform of this is, that's a constant. u hat of k. And what's the 
transform of that? So this is our chance to use probably the most important rule for 
Fourier integrals. Maybe you'll tell me what it is. You should think what it is. If I take 
a derivative, that's the rule. If I take a derivative of the function, what's happening 
in frequencies? I could make that happen here. If I took the derivative, yeah. So 
maybe if I take the derivative here, so here it's just remembering the rule. Suppose I 
take the derivative of this equation. I get this integral, and what would f' be? What 
would f hat, sorry. If I take the x derivative of this, if I take the x derivative of this 
equation, what happens on the right-hand side when I take the x derivative? Down 
comes i k. Down comes ik. So when ik is coming down, I won't even finish that 
equation. And ik is coming down, when I take the derivative. So the derivative, the 
transform, is multiplied by ik, higher frequencies are emphasized now because of 
that k factor. And now if I take two derivatives, I bring ik twice. Because i squared k 
squared, the i squared and the minus give me a plus. So that's just k squared. u hat, 
of k. OK with that? 

And now, we get an immediate formula for u hat of k, the solution. Well, it's the 
solution but it's in frequency space. If we wanted to know it in x space, as we do, 
we've got to transform back. But what do we get here? It's just f hat of k. Divided 
by, this is just multiplied by a squared plus k squared. OK, so that's the answer. In 
frequency space. That was simple. And then if I wanted it in x space, I take the 
reverse transform. Notice that this is, it here are the same three steps that I 
emphasize all the time about using eigenvectors and eigenvalues. Do you remember 
those three steps for solving differential equations? Difference equations, linear 
equations, whatever? The three steps were, find that coefficients, expand everything 
in eigenfunctions. I won't write, I'll talk. The three steps were expand in 
eigenfunctions, follow each eigenfunction function separately, that was the trivial 
step with just a division like this division. And then use those coefficients of the 
eigenfunctions, combine them all back to get the answer. Right? 

Step one, write it in the right basis, step two easy in that basis. Step three go back 
to your physical space. We're doing exactly the same thing here. These e^(ikx)'s are 
the eigenfunctions of this thing. They're the eigenfunctions. And here the eigenvalue 
of this stuff is k squared plus a squared. And that's what we divided by. And then the 
final job of going back from u hat to u, so write u there. Can I do, this f now, it's 
really u that I'm wanting to bring back to physical space. So just for the sake of your 
-- I see -- it, let me put a u in. So that's the answer in a way. It's the answer, it's a 
formula for the answer. It did depend on our being able to do two integrals. By the 
integral from f to f hat may not have been easy, and then the integral from u hat 
back to u, this integral, might not have been easy. So it's a formula. OK, now I want 
to go with it a little longer. Because I want to show you how the delta function pays 
off. So let me do the example where f(x) is the delta function. So now we're really 
close to where this course began. Differential equation with a delta function. The only 
new thing is, we're not on an interval we're on the whole line. 



So I take transforms, so what's the transform now of this specific f(x) is? One. We 
just saw. OK, so now we get a one there. Now we just divide by here. And we've got 
a one here. So we were able to go, this was an integral we could easily do, to get 
from delta to delta hat, which was just one. And fantastically, this is an integral to go 
back to u(x), to go back to u(x), that's an integral we can do. Well, you may ask how 
can we do it. How do I find the u(x) that has this transform? Well, I either use 
complex variables to do integrals like this, residue methods that are in Chapter 5, or 
I look in a table. Or I look at the blackboard over there. I think that's the best way. 
Look at this blackboard. Right? Because this is the answer we got. We got that same 
answer apart from a constant factor 2a. So this is our function. This is our solution, 
u(x) is this. What am I going to call that? Two-sided pulse? I'll call that the two-sided 
pulse? Maybe I should give it a name but I'll just write out those words two-sided 
pulse. That's it divided by 2a. So we've got the answer. Let me just make a little 
more space here. This was one over a squared plus k squared, and now having seen 
that already, I just say yep, that must be it. It's the two-sided pulse, and I have to 
divide by 2a. Do you see that that's the correct answer? We can substitute that in 
the equation and see that it works. I mean, so we have solved the problem. We have 
solved the problem when the right side was delta. 

Let's put it into the equation. So this is just because we did this, it's nice to do it 
again after all this time. So I put it in the equation. This two-sided pulse over 2a. So 
what's my equation? Well, this is zero most of the time. So I believe that if I plug in 
this function, it will give me the zero. Do you want to just plug it in? I believe that if 
I plug in a^(-x), or a^x, either one, can I just check that you try u=e^(-ax). Put it 
in and just see that I get zero. Because yeah, two derivatives bring down a squared 
with a minus. And there's a squared with a plus. It works, right? Two derivatives of 
this function bring down minus a twice, so that's a squared. So it's minus a squared, 
plus a squared. Works. And then, of course, the important point is x=0 where the 
spike is. What happens at the spike, going back to the beginning of the course? This 
term is going to be unimportant compared to this term. What do I see? With -u'' 
equal a spike, what was the solution to that? u had a corner, right? The slope of u, 
what did the slope of u do? It dropped by one, was that right? The slope of u 
dropped by one. We used to have corners going up and down and the difference 
between the slopes was one. And here, the difference between the slopes, ah, look. 
The slope has dropped by 2a, and when we divided by the 2a, it was just right. And 
now, when I divide by the 2a, this has a slope of 1/2. This has a slope of minus 1/2, 
the drop is one. And we're right. It solves the equation. Nobody doubted that. OK, so 
that's great. We have found the solution to this equation, when the right side is 
delta. Good. 

Now, can I ask you do you remember the name? There's a special name for the 
solution when the right side is a delta function. Whose name is associated with that? 
So that this particular u, I'm going to give it another letter. It's the particular u, the 
special u when the right side is delta, and whose name is associated with that 
solution? Green. It's the Green's function. Green's function. The famous Green's 
function. Green's function is just like an inverse to the problem. This is like having an 
identity on the right-hand side. It's like there it is. So let me just use G for Green's 
function. So that's the Fourier transform of the Green's function, and this is the 
Green's function. This is the Green's function. Now I can give it its name, Green's 
function, when I divide by the 2a. And now the slope is 1/2 going up, and minus 1/2 
coming down. And it's all right. OK, so we found the Green's function. We found the 
fundamental solution to the equation, and this is it. It was straight lines, right? It 



was straight lines in the first weeks of the course. But now there's an exponential 
drop-off caused by this additional term. OK, good. So that's straightforward. 
Depending on our being able to recognize or do the transform back to the x space. 

Now comes the question, what about the original f(x)? How can the Green's function 
be used? So you're seeing now what use is this Green's function? With that right-
hand side, when the right-hand side is something different? When the right-hand 
side is some different f(x)? So let me go back to an f(x) on the right. And then 
there's an f hat of k, after the transform. How can I use the Green's function for a 
general source? The general source term, a general load? This is a fundamental idea. 
I would say fundamental. How do you use the Green's function? And remember, the 
Green's function is like telling you the inverse matrix. So it can't be too hard. It's like 
solving a linear system when you know the inverse matrix. So that's the analogy, but 
let's just focus on the particular question. I think the intuition, you should have an 
intuition for how the Green's function works. So the Green's function was the 
solution when the source term was a delta. And here's the intuition. It's rough, but it 
works. Any source term, f(x), is in some way a combination of delta. If f(x) is a 
combination of deltas, then our answer u(x) is the same combination of the Green's 
function, right? If the right-hand side is some combination of this special delta, then 
the solution will be the same. This is just linearity. Super position, whatever short or 
long word you like to use. So if I can make sense of that statement, that f(x) is a 
combination of deltas, then I'm in. 

Now, what do I mean by a combination of deltas? I mean, well, those deltas are 
going to be shifted deltas. Obviously the single delta, delta(x), is a spike at the 
origin. That's only one point. I want to combine delta of x and its shifts. So I'm going 
to have to expecting to be using G(x), and its shifts, right? OK so now I'll just say 
this again. I'm thinking of f(x) as a combination of delta and its shifts, and then the 
solution u will be the same combination of G(x) and its shifts. So now you just have 
to tell me what combination. What combination of delta and its shifts? Maybe you'll 
allow me. Let me just do this maybe on that board. I just can't help writing down the 
discrete case. So, in the discrete case, the delta vector corresponds to something 
like . Right? That was a typical delta vector with a one in the zeroth position. Then its 
shifts would be , that'd be a shift. And another shift would be . And another shift 
would be . So now there is the delta vector and its shifts. These four guys. 

OK, now suppose my f, my right-hand side, is . I want to write that as a combination 
of those deltas. This would be in the case when if I know the solution for each of 
these guys, the Green's function, the inverse matrix. Everybody sees that if I know 
the solution to those four, I know the inverse matrix. Right? Because if I can solve 
with those four right-hand sides, those four solutions are the columns of the inverse 
matrix. Right? You remember that if I had a matrix A and I was looking for its 
inverse, I solve A A inverse equal I. And I is just these four guys. So a inverse is the 
solution from these four guys. OK, now everybody's going to tell me what's the 
solution for this right-hand side ? Suppose this guy has solution, so a inverse, the 
columns of a inverse are this Green's function. This Green's function with a shift. 
Maybe SG, Green's function with a shift. Yeah, S squared and G, Green's function 
with a double shift. S cubed G; I'm just cooking up, I never used these letters 
before. But what's the answer? Then u is what? It's one times the Green's function. 
And it's two times the guy, right? This f is just, this f is just, is one times the Green's 
function, two times the shifted. Three times the double shifted, and seven times the 
triple shift. Right? Just taking four minutes to do something simple because over 
there, when I use the continuous case it'll look a little strange, but here it's so easy. 



That'll involve integrals, this involves a sum. So what is it? I have G, twice the shift 
of G. Three times the double shift of G, and seven times the triple shift of G. Right? 
By linearity, by superposition, if this is my f, this is my u. Everybody's with me here, 
right? That if I take a combination of f's, the answer is the corresponding 
combination of G's. OK, good. 

I didn't mean that. That wasn't so great. That shouldn't have been called, I didn't 
mean to call those the Green's functions. I meant to call those the deltas, right? And 
the Green's functions were the answers. So this a shift to delta, this is a doubly shift 
to delta, this is a triply shift to delta, and now this is one of the delta, two of the 
shifted delta, three of the doubly shifted delta. The f is a combination of deltas and 
its shifts. The u is a combination of Green's function, second shift. Apologies for 
making that mistake, but maybe it's brought us back to the point. So the point is, 
express your function f, your source as a combination of deltas, just exactly our plan. 
Then u is the same combination of the G's with the same shift. Alright, now back 
here. How do I express f(x), in what way is f(x) a combination of deltas? I mean, 
slow down just to see that point. How much of delta, of the spike at x=3, how much 
of delta(x-3), so that's a spike at three, right? How much of that do you think I need 
in f(x)? f of? f(3). Whatever f is at that point, x=3, that's the amount I need there. 
So this would be f(3). So that that part would sort of have the right pep, the right 
punch at the point three. Now, three could be any point, that's any point along the 
line. 

Let me, I can't use x for other points on the line because I've got an x in the 
formula. Let me use t. So this was t equal to three. Now I want to do it at all points. 
I want to take f(2), and f(pi), and f at everything and put them together. And of 
course putting them together in the continuous case means not sum, as I did there, 
but integrate. So I have to, now I'm going to change three to a t, because this is the 
amount of f of, so that's the amount, that's the delta functions which spike at t, 
multiplied by f(t), and now how do I get f(x) out of this? I put them together. dt. I 
add up, this is the combination I've been talking about. So this is like any f. This is 
like a crazy delta function identity. Actually, it's not crazy, it's the identity we've used 
our whole lives. Or at least our whole 18.085 lives, which is all that matters, right? 
OK, so I'm integrating a delta function. And I want to see, do I get that answer? And 
you're going to say absolutely, clearly you get that answer. No. Everybody knows 
that if I integrate something times the delta function that I plug in at the point t=x, 
where that spike happens, I put t=x, I get f(x), correct. So that's like any, that's an 
identity or whatever you would like to call it. And now just tell me the final answer. 

Let me put it on the board above. Now, so this was, this expressed my f(x) as a 
combination of delta. Just the way over here I expressed as a combination of delta. 
Now, what's that u? What's the function u? The solution that comes from f(x). Just 
erase here so that I can put all of them. The point of the whole example now is for 
you to tell me what's u(x)? Can you do it? You see what u(x) is going to come out? 
Going to come out nicely. I've written the right-hand side f as a combination of 
deltas. I know the answer, for delta. It's G. What's the answer when the delta is 
shifted along? What's the Green's function when the spike is moved along to a point, 
t? Just because this constant coefficient translation and variant LTI problem is 
shifting in variant, the answer, when the spike is moved along, is just the answer G 
moved along. So here's my answer. All this, this is my input and my output is the 
same integral, this from minus infinity to infinity, of where it was f, now it's G. Well 
no, what do I want? Help me out here. No, f(t) is just the amount of the delta, but 
now what's the solution? What do I write now? G of? x-t. That's it. You see why that 



works? Because this was the input, G's the output. The problem was shift in variant, 
so if I shifted the input I shifted the output. It was a linear, so if I add up a bunch of 
deltas, the solution is add up a bunch of G. That's the answer. Oh, I could just say 
one thing more. But you've got it if you see math. So that's the point, that if you 
know the Green's function, well yeah. 

Maybe from a practical point of view, what have we done? The original way we did it 
involved our computing two integrals. We had to, if we were given an f(x), we had to 
find it's transform f hat of k, that we weren't sure we could do with pencil and paper. 
And then we got an answer with an f hat of k up here and then we had to transform 
back. Step one and step three, we had to do. Now this is better. This is like better, 
because we were able to get an explicit answer, G, when this was a delta. You could 
say I've got it down to one integral. Well, for whatever that's worth. I was going to 
say, probably can't do that one either depending what f(x) is. But that's a nice way 
to see the answer, you have to admit. And it's because the problem is is a shift in 
variance and I can write the answer that way. OK, and now one more thing about 
this. And I've written the word, the key word, down here. Convolution. Do you see 
the nice way to write that answer? It's the convolution of f with G. We didn't do 
integral convolutions, we just did the discrete sums, but I mentioned that in the 
integral case, you have this same thing. t and x-t adding up to x, just the way we 
had k and n-k adding up to n. In other words, this is just notation. But I'm just going 
to write the answer in a nice way. So after all that lecture, the answer to the 
differential equations is in three symbols f star G. Where this just simply means this. 
This is the continuous convolution, not cyclic, and there's the answer. 

I'll allow myself one more thing. Here we had a convolution for the right-hand side. 
We started with this, this is a convolution. Now, what are the three symbols that I 
write down? For the shorthand for this equation? So this was to be true for any f. 
And now can I write down, how do I write? f(x) is equal to, what is this right-hand 
side? It's f convolved with? So any f is the same f convolved with delta. In 
convolution, delta is one. Because when I go to the other space and I get a 
multiplication, it really is one, right? In the other space. So in the other space, so 
this convolution in x space turns into multiplication in frequency space. And it just 
tells me that f hat is f hat times one. So that's the way to look at it in physical space. 
And this is the way to look at the solution. So, one more sod and I'll come back to 
that. So this G, the Green's function, this is what a CAT scan does, what an X-ray 
telescope does. What all sorts of physical things do. Provided we can assume this 
translation in variance, which is never perfectly true because the telescope is finite. 
But a telescope takes the star, takes the light signal, convolves it with the 
telescope's own little Green's function. It blurs it, it's the point spread function. It's 
the blurring function, G. The Green's function on a telescope is somehow, that's 
what's you're convolving with. And if you want to find that star as a bright, single 
point. You've got to do deconvolution. You've got to do a division to get the G out. 
May I just say those words and then it's Thanksgiving? That a machine, a sensor 
which is translation in variant, or you could say close enough to pretend it is, 
because nothing is going to be perfect translation in variant all the way out to 
infinity. But if it's near the star. So I look at this point star in the telescope I see a 
blur. That's because the telescope has convolved the correct thing that I should have 
seen, with G. It's blurred it by its point spread function. So what if the person, the 
factory where the telescope was built can test this whole thing on points. And it can 
find the point spread function. And if I knew G, then I could undo it. And get a clear 
picture. So it's that step that won the Nobel Prize for the CAT scan, and I'm sure is 



winning Nobel Prizes for astronomers. OK, have a great Thanksgiving, I'll see you 
Monday. Good. 


