Homework 6

Homework: Richard Zhang

6.1 Complex Exponentials of Fourier Series

Find the Fourier series representation using $e^{ \pm i n x}$ of the following function

$$
\begin{equation*}
f(x)=x,-\pi \leq x \leq \pi \tag{6.1}
\end{equation*}
$$

6.2 Fourier Series over Half Intervals

Suppose we want to represent $f(x)$ defined over the half interval $[0, L]$, using the basis function $\sin \frac{n \pi}{L} x$ and $\cos \frac{n \pi}{L} x$. Since these basis functions are for functions over $[-L, L]$, we must extend f over to $[-L, 0]$ in order to use these functions. By "extend" we mean to define another function $g(x)$ such that $g(x)=f(x)$. Amid many possible extensions, we define the odd extension as

$$
g(x)=\left\{\begin{array}{l}
f(x), x \in[0, L] \tag{6.2}\\
-f(-x), x \in[-L, 0]
\end{array}\right.
$$

In other words, in the odd extension, g is odd. On the other, we can define the even extension as

$$
g(x)=\left\{\begin{array}{l}
f(x), x \in[0, L] \tag{6.3}\\
f(x), x \in[-L, 0]
\end{array}\right.
$$

In other words, in the even extension, g is even.

Now we let $f(x)=\cos (x)$ over $[0, L]$. Here are three tasks

- Draw the odd extension of f and calculate the Fourier series (note since the extension is odd, all cosine terms of the Fourier series are gone)
- Draw the even extension of f and calculate the Fourier series (note since the extension is even, all sine terms of the Fourier series are gone)
- With the knowledge acquired so far, re-read the Week 7 Lecture and understand what happened in equation (7.30). Feel free to discuss with me during office hour if you don't get it.

Hint: if you are stuck with the integrals, try the following trig identity

$$
\begin{align*}
\cos (a) \cos (b) & =\frac{1}{2}(\cos (a-b)+\cos (a+b)) \tag{6.4}\\
\cos (a) \sin (b) & =\frac{1}{2}(\sin (b+a)+\sin (b-a)) \tag{6.5}
\end{align*}
$$

6.3 Laplace's Equation in the Cartesian Coordinate

Solve $\Delta u=0$ INSIDE a square defined by $x=0, x=1, y=0$, and $y=1$, subject to the following boundary condition

$$
\left\{\begin{array}{l}
u(x, 0)=0 \tag{6.6}\\
u(x, 1)=0 \\
u(0, y)=0 \\
u(1, y)=y
\end{array}\right.
$$

6.4 Laplace's Equation in the Polar Coordinate

Solve $\Delta u=0$ INSIDE a circle of radius 1 and boundary condition $u(\theta)=\cos (10 \theta)$

MIT OpenCourseWare
https://ocw.mit.edu
18.085 Computational Science and Engineering I

Summer 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

