
18.085/18.0851 Computational Science and Engineering I Summer 2020 

Week 1 (June 8-June 12) 

Lecturer: Richard Zhang Scribes: Richard Zhang 

Welcome to 18.085/18.0851. This series of lectures will be a rapid review of linear algebra. 

1.1 Matrices 

Matrices are the fundamental building blocks of linear algebra. Briefly put, they are a table of numbers, 
such as ⎡ ⎤ 

2 −1 0
K = ⎣−1 2 −1⎦ (1.1) 

0 −1 2

This matrix, K, is a 3 × 3 matrix. The first 3 indicates the number of rows, while the second 3 indicates the 
number of columns. You will often see the notation K ∈ R3×3 , where R indicates the real numbers. 

1.1.1 Basic Operations of Matrices 

One can add, subtract, and multiply matrices. Division is a bit complex so we table the discussion for now. 

1.1.1.1 Addition/Subtraction 

Matrices of the same dimension can be added/subtracted. To add/subtract two matrices, simply add/subtract 
the numbers in the corresponding entries. For example, suppose ⎡ 

2 
K = ⎣−1 −1

2

⎤ ⎡ 
0 0.5 
−1⎦ , L = ⎣−0.5 1 

3 

⎤ 
2 
5⎦ (1.2) 

0 −1 2 0 4 8 

Then ⎡ 
2 + 0.5 

K + L = ⎣−1 − 0.5
−1 + 1
2 + 3

⎤ ⎡ 
0 + 2 2.5 
−1 + 5 ⎦ = ⎣−1.5 0 

5 

⎤ 
2 
4 ⎦ (1.3) 

0 + 0 −1 + 4 2 + 8 0 3 10 

1.1.1.2 Multiplication 

In order to multiply two matrices, the number of columns of the first matrix has to equal the number of rows 
of the second matrix (otherwise multiplication simply does not make sense). The entry (i, j) of the resulting 
matrix of the multiplication is equal to the sum of the products between row i and column j. Let’s multiply 
K and L ⎡ ⎤ 

1.5 −1 −1 ⎣ ⎦K ∗ L = 1.5 1 0 (1.4) 
0.5 5 11 

1-1
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1.1.1.3 Inverse 

To define the inverse of a matrix, we first define a special matrix called the identity matrix. For a given 
number n, the identity matrix is defined 

Definition 1.1 For a given natural number n, an identity matrix, In, is an n − by − n matrix such that all 
entries are 0 except for those on the diagonal, which equal 1 

For example, a 3-by-3 identity matrix is ⎡ ⎤ 
1 0 0 

I3 = ⎣0 1 0⎦ (1.5) 
0 0 1 

Then for any n-by-n matrix, A, B is the inverse of A if and only if A ∗ B = In. We will discuss later on how 
to find the inverse of a matrix. 

Note that not every matrix has an inverse. Matrices that have inverses are called invertible matrices. 

1.1.1.4 Transpose 

The transpose of a matrix is equal to the same matrix with columns and row switched. For a given matrix 
A, we let AT be its transpose. As an example, LT is equal to ⎡ ⎤ 

1.5 1 .5 
LT = ⎣0.5 1 5 ⎦ (1.6) 

1 9 8 

1.1.1.5 Gaussian elimination 

Please watch the video by Khan Academy ( https://www.youtube.com/watch?v=woqq3Sls1d8 ) on how 
to perform the Gaussian elimination on a matrix. 

1.1.2 Vectors 

Vectors are matrices such that one of the dimensions is 1. A vector that is n − by − 1 is called a row vector, 
while a vector that is 1 − by − n is called a column vector. 

Another view of vectors is that they are geometric objects in Rn . Both views are equivalent, but have 
separate implications in numerical linear algebras 

1.1.2.1 Dot Product 

Let’s suppose we have ~u = (u1, u2, ..., un)
T and ~v = (v1, v2, .., vn)T . Then we define the dot product of ~u and 

~v as 

~u · ~v = u1v1 + u2v2 + ... + unvn (1.7) 

Alternatively, we can also show that 

~v · ~u = |~v||~u| cos(θ) (1.8) 

https://www.youtube.com/watch?v=woqq3Sls1d8
https://www.youtube.com/watch?v=woqq3Sls1d8
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2where |v| indicates the magnitude of ~v = (v1
2 + ... + v )1/2 and θ indicates the angle in between ~u and ~v. Then 

dot product tells us a few things 

π• If the dot product is zero, then we know that cos θ = 0, which means that θ = . The two vectors2 
therefore are perpendicular to each other. In mathematics, we also call it ”orthogonal”

• If the dot product is |u||v|, then we know that cos θ = 1, which means that θ = 0. The two vectors
therefore are parallel to each other

1.1.2.2 Lp Distance/Norm of Two Vectors 

It is rather trivial to compare the difference between two numbers. On the other hand, comparing two 
vectors does not seem as straightforward. In particular, we define the Lp distance between two vectors, 
~v = (v1, .., vn) and ~u = (u1, ..., un) as 

1/p||v − u||Lp = ((v1 − u1)
p + (v2 − u2)

p + ... + (vn − un)
p) (1.9) 

Note that for p = 2, this is simply the Euclidean/Pythagorean distance between two vectors. We also define 
the L∞ norm/distance as 

||v − u||L∞ = max{|v1 − u1|, |v2 − u2|, ..., |vn − un|} (1.10) 

Note that there is a technical difference between norm and distance, but do not worry about it for this 
course. 

1.2 Properties of Square Matrices 

Here is a list of properties for a given matrix A ∈ Rn×n . 

1.2.1 Invertibility 

Definition 1.2 A is invertible if there exists a matrix B such that AB = In, where In is the n-by-n identity 
matrix. 

We often denote B as A−1 . 

There are several ways of finding the inverse of a matrix. This video (https://www.youtube.com/watch?v=HwRRdGE 4Y 
o) describes one general way of finding inverses. For the purpose of this course, you only need to know the 
inverse of a 2-by-2 matrix. 

We let � � 

A = 
a 
c 

b 
d 

(1.11) 

Then � � 
1 

A−1 = 
ad − bc 

d 
−c

−b
a

(1.12) 

https://www.youtube.com/watch?v=HwRRdG_E4Yo
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As you can see, if ad − bc = 0, A−1 stops making sense. We call ad − bc the determinant of A. This will be 
explained further in the section later. For now, let’s introduce a few more properties of A Once A ∈ Rn×n 

is invertible, we can then solve for the the system of linear equations. For b ∈ Rn , we can solve for x ∈ Rn 

Ax = b (1.13) 

The way we solve it is via the inverse 

A−1Ax = A−1b (1.14) 

x = A−1b (1.15) 

Gaussian elimination can also be used to solve linear equations. The motivation for the linear equation is 
system of linear equations, for example: 

3x1 − 2x2 + 0.5x3 = 1 (1.16) 

−2x1 + 1.5x2 − 3x3 = −2 (1.17) 

0.1x1 − 4x2 + 7x3 = 3.1 (1.18) 

This can be recast as Ax = b, where ⎡ ⎤ 
3 −2 0.5 ⎣ ⎦A = −2 1.5 −3 (1.19) 
0.1 −4 7 ⎡ ⎤ 
1 

b = ⎣−2⎦ (1.20) 
3.1 ⎡ ⎤ 
x1 

x = ⎣x2
⎦ (1.21) 

x3 

To solve this equation on MATBLAB, we simply do A\b to get x 

1.2.2 Positive Definite 

Definition 1.3 A ∈ Rn×n is positive definite if for all x ∈ Rn , the quadratic form is positive, ie. xT Ax > 0 

The relevance of this property will be revealed later. 

1.2.3 Symmetric 

Definition 1.4 A ∈ Rn×n is symmetric if AT = A. 

1.2.4 Diagonal 

Definition 1.5 A ∈ Rn×n is diagonal if the only nonzero entries are along the diagonal of the matrix 

1.2.5 Upper/lower triangular 

Definition 1.6 A ∈ Rn×n is lower/upper triangular if all entries above/below the diagonal are zero 
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1.2.6 Orthogonal and Orthonormal 

Definition 1.7 x, y ∈ Rn are orthonormal vectors if x · y = 0 and ||x|| = ||y|| = 1 

Definition 1.8 A ∈ Rn×n is an orthogonal matrix if all columns of A are orthonormal to each other 

It’s beyond me why A is not called an orthonormal matrix but in any case. 

1.3 Spaces of/Formed by Vectors 

Vector space is an important concept in linear algebra and mathematics in general. First we introduce a few 
concepts. 

• Linear combination: an expression to construct a new vector using a combination of existing vectors 
and scalars. For example, given vectors v1 and v2 and scalars c1 and c2, the new vector u = c1v1 + c2v2 

would be called a linear combination of v1 and v2 

• Span: the span of a set of vectors refers to the collection of all linear combinations of the vectors. If 
we have vectors S = {v1, ..., vn}, the span of S is often denoted as Span{S} = Span{v1, ..., vn} 

• Linear (in)dependence: a set of vectors, {v1, ..., vn}, is said to be linearly dependent if there exists 
scalars a1, ..., an, where not all the coefficients are zero, such that a1v1 + ... + anvn = 0 

Now we move on to the important concept of vector space 

1.3.1 Vector Space 

A vector space V refers to a collection of vectors that observe the following rules: 

• The zero vector is in V 

• If v1 and v2 are in V , then any linear combinations of v1 and v2 are also in V 

Examples of vector spaces are 

• Rn 

• Span{v1, v2, v3}, where v1 = (1, 1, 1), v2 = (1, 2, −1), v3 = (3, 6, −3) 

• Span{v1...vn}, for any collection of vectors v1...vn 

• The zero vector, ie. v = (0, ...0) 

1.3.1.1 Basis Vectors 

You may notice that in the second bullet above, it is not necessary to have v3 and v2 at the same 
time when constructing the vector space. This is because v2 and v3 are linearly dependent. Hence, 
V = Span{v1, v2, v3} = Span{v1, v2} = Span{v1, v3}. The minimal set of linearly independent vectors 
to span the vector space is called the basis vectors. In this example, v1, v2 or v1, v3 are both valid basis 
vectors of V . Furthermore, the number of basis vectors for a given vector space V is called the dimension of 
V , often denoted as dim(V ) 
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1.3.2 Null Space and Column Space 

In this section, we shall discuss the two most important vector spaces in linear algebra, null space and column 

space. For a given matrix A ∈ Rm×n

Definition 1.9 The null space of A, denoted as nul(A), is defined as {x ∈ Rn|Ax = 0}. 

If we think of A as a mapping between Rm to Rn , then the the null space of A refers to the elements in Rm

that get ”killed” (aka. reduced to the zero vector) when being mapped to Rn . 

Definition 1.10 The column space of A, denoted as Col(A), is defined as the span of all column vectors of 
A 

Finding the basis vectors of the column involves reducing the column vectors of the matrix until you have only 
linearly independent ones. The technique of doing so can be found in this video (https://www.youtube.com/watch?
v=avJDljr s), starting at time-stamp 2:11. 

It is more important, however, that you familiarize yourself with the method of finding the null space of a ma-
trix. The Khan Academy has a nice explanation in this video (https://www.khanacademy.org/math/linear-
algebra/vectors-and-spaces/null-column-space/v/null-space-2-calculating-the-null-space-of-a-matrix) 

1.3.3 Rank-Nullity Theorem 

One of the most important theorem in linear algebra is stated as follows 

Theorem 1.11 For a given matrix A ∈ Rm×n , n = dim(Col(A)) + dim(Nul(A)). dim(Col(A)) is also 
called the rank of A 

As a result of the rank-nullity theorem, we have some important facts 

Theorem 1.12 For a square matrix A ∈ Rn×n , the following statements are equivalent 

• A is invertible

• Rank(A) = n

• All columns of A are linearly independent

• dim(Nul(A)) = 0

• The only member of the null space of A is the zero vectors. This is also called the trivial null space

1.4 Determinants and Eigenvalues 

In this section we introduce the two most important quantities in linear algebra 

https://www.youtube.com/watch?v=avJDljrhr-s
https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/null-column-space/v/null-space-2-calculating-the-null-space-of-a-matrix
https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/null-column-space/v/null-space-2-calculating-the-null-space-of-a-matrix
https://www.youtube.com/watch?v=avJDljrhr-s
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1.4.1 Determinant 

The determinant of a square matrix is a certain quantity that encodes the linear transformation of a matrix. 
You have already seen the definition of determinat for a 2−by −2 matrix. Please familiarize yourself with the 
n−by −n case through this video (https://www.youtube.com/watch?v=HwRRdGE 4Y o) by Khan Academy. 

Here is a useful add-on to Theorem (1.12): 

Theorem 1.13 A ∈ Rn×n is invertible if and only if det(A)  6= 0. 

1.4.2 Eigenvalues and Eigenvectors 

This is one of the most important concepts in our study. Let A ∈ Rn×n . Then if a scalar λ and vector v satisfy 

Av = λv (1.22) 

Then λ is called an eigenvalue of A and v is called the eigenvector of A. 

We first demonstrate how to find eigenvalues. Given the formula above, we write 

Av − λv = 0 (1.23) 

(A − λIn)v = 0 (1.24) 

where In is the n − by − n identity matrix. Therefore, v is in the null space of A − λIn. Notice that by 
Theorem (1.12), either v ≡ 0 is the only solution, in which case A−λIn is invertible, or there exists nontrivial 
v that satisfies the relation above. By Theorem (1.13), it follows that 

det (A − λIn) = 0 (1.25) 

Therefore, to find λ, we just have to compute the determinant and solve the algebraic equation. 

Once we obtain λ, we plug it in (1.24) and solve for the null space of A − λIn, which was described in the 
above section. 

As an example, let us compute the eigenvalues and eigenvectors of A, where � � 
2 −1 

A = (1.26)−1 2

First we write the determinant equation 

det(A − λI2) = 0 (1.27) 

(2 − λ)(2 − λ) − (−1)(−1) = 0 (1.28) 

λ2 − 4λ + 3 = 0 (1.29) 

Hence we obtain that λ1 = 1 and λ2 = 3. To find the eigenvector, we first compute A − Iλ � � 
1 −1 

A − λ1I2 = (1.30)−1 1� � 
−1 −1

A − λ2I2 = (1.31)−1 −1

https://www.khanacademy.org/math/linear-algebra/matrix-transformations/inverse-of-matrices/v/linear-algebra-nxn-determinant


1-8 Lecture 1: June 8-June 12 

From which we can compute the null spaces as �� √ �� 
1/ 2 

Nul(A − λ1I2) = Span √ (1.32)
1/ 2 �� √ �� 
1/ 2 

Nul(A − λ2I2) = Span √ (1.33)−1/ 2

√ 
It is generally a good habit to normalize the basis vectors (hence the factor of 2). 

Here is another useful add-on to Theorem (1.12) 

Theorem 1.14 A ∈ Rn×n is invertible if and only if all eigenvalues are nonzero. 
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