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2.1 u00 = f(x): the First Differential Equation 

Differential equations are the fundamental equations governing numerous physical, chemical, and biological 
processes. In this section, we focus on the following differential equations ( 

00−u = f(x), x ∈ (0, 1) 
(2.1) 

au + b du = g(x), x ∈ {0, 1}dx 

If a 6= 0 and b = 0, the boundary condition is called the Dirichlet boundary condition. 

If a = 0 and b 6= 0, the boundary condition is called the Neumann boundary condition. 

If both a and b are nonzero, then it is called Robin boundary condition. 

We would like to explore the numerical solution to these problems. 

2.1.1 Finite Difference 

The key to solving differential equations is approximating derivatives-a process of infinitesimal division-with 
something finite, something that a computer can handle. To do that, we recall the definition of derivatives. 
For a function f : R → R, the derivative of f(x), denoted as f 0(x), is defined as 

f(x + h) − f(x)
f 0(x) = lim (2.2) 

h→0 h 

Hence, the first attempt to approximating f 0(x) would be 

f(x + h) − f(x) 
(2.3)

h 

This is known as the forward difference approximation. However, there are equivalent definitions of deriva-
tives, such as 

f(x) − f(x − h)
f 0(x) = lim (2.4) 

h→0 h 
f(x + h) − f(x − h) 

= lim (2.5) 
h→0 2h 

2-1
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Hence, we can also approximate f 0(x) as 

f(x) − f(x − h) 
(2.6)

h 
f(x + h) − f(x − h) 

(2.7)
2h 

These are called, respectively, the backward difference approximation and centered difference approximation. 
The question is: how do they differ as valid approximations to derivatives? Is one more accurate than the 

3 2other? To explore that question, let’s take the function f(x) = x . We know that f 0(x) = 3x . We compute 

3f(x + h) − f(x) (x + h)3 − x 
= = 3x 2 + 3xh + h2 (2.8)

h h 
f(x) − f(x − h) x3 − (x − h)3

= = 3x 2 + 3xh − h2 (2.9)
h h 

f(x + h) − f(x − h) (x + h)3 − (x − h)3 2 = = 3x + h2 (2.10)
2h h 

(2.11) 

2Notice that in each case, the first term is 3x , and the subsequent terms depend on h. This means that as h 
gets small, the approximation becomes more accurate. Secondly, for h small, 3xh is going to be a lot larger 
than h2 as h gets smaller and smaller. Hence, the term with the lowest order of h determines the accuracy of 
each method. This term is also called the leading order. We can then conclude that, at least for the function 

3f(x) = x , 

• The forward difference is first-order, denoted as O(h);

• The backward difference is first-order, denoted as O(h);

• The center difference is second-order, denoted as O(h2)

It is actually true that the forward difference and backward difference are first-order for any function f(x). 
The key to proving this fact is Taylor expansion (https://en.wikipedia.org/wiki/Taylor_series). For a 
function f(x), we can write 

∞X f (n)(x)hn 

f(x + h) = (2.12) 
n! 

n=0 

= f(x) + hf 0(x) + 
1 
h2f 00(x) + 

1 
h3f 000(x) + ... (2.13)

2 6 
∞X f (n)(x)(−h)n 

f(x − h) = (2.14) 
n! 

n=0 

h2f 00(x)−= f(x) − hf 0(x) +
1 1 

h3f 000(x) + ... (2.15)
2 6 

Then we observe the following algebraic manipulations 

f(x + h) − f(x) 1 1 
= f 0(x) + hf 00(x) + h2f 000(x) + ... (2.16)

h 2 6 

Since the smallest/leading order of h is 1, this method is first-order. A similar calculation can be done for 
backward and centered difference approximations. This will be left as a homework exercise. 

https://en.wikipedia.org/wiki/Taylor_series
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In fact, (2.14) and (2.15) provide us a powerful tool to find the suitable finite difference approximations 
for any orders of derivatives. To find the second order finite difference approximation, we notice that 
(2.14) + (2.15) − 2f(x) gives us 

1 
h4f 0000(x) + ...f(x + h) + f(x − h) − 2f(x) = h2f 00(x) + (2.17)

12 

If we divide everything by h2 , we have 

f(x + h) + f(x − h) − 2f(x) 1 
h2f 0000(x) + ... 

h2
= f 00(x) + (2.18)

12 

This gives us an second-order approximation to the second derivative of a function f(x). This is known as 
the second difference approximation. 

2.1.2 Finite Difference Equation 

Now that we know how to approximate u00(x), let us solve (2.1), with the following boundary condition 

u(0) = a (2.19) 

u(1) = b (2.20) 

First, let’s do some preparation 

• Divide the interval (0, 1) into N + 1 pieces, so that each piece is of size h = 1/(N + 1).

• Then at the ith grid point, we have xi = ih, for i = 0, ..., N + 1.

• It is our goal to evaluate u(xi) for all i = 1, ..., N (note that u(x = x0 = 0) and u(x = xN +1 = 1) are
located at the boundary whose conditions have been specified as part of the problem setup)

Then we write the second difference to u00(x) at each x1, ..., xN

−u(xi+1) + 2u(xi) − u(xi−1)
f(xi) = (2.21)

h2

If we abbreviate u(xi) as ui and f(xi) as fi, we can rewrite the second difference equation as 

−ui+1 + 2ui − ui−1
fi = (2.22)

h2

Then if we write N of the equations above, we can recast all of them into a matrix equation 

~K~u = f (2.23) 

where ⎤⎡ 

1 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0 . . . 0 
−1 2 −1 0 0 . . . 0 
0 −1 2 −1 0 . . . 0 
. . . . . . . . . . . .

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.24)

h2 ...
...

...
. . .

...
...

...
. . .

0 · · · · · · · · · · · · · · · · · · − 1 2
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~u = (u1, ..., uN )
T (2.25) 

~f = (f1, ..., fN )
T (2.26) 

(2.27) 

Now notice that the first and last row of the matrix equation read 

2u1 − u2 
= f1 (2.28)

h2 

−uN−1 + 2uN 
= fN (2.29)

h2 

which is not the same as the second order approximation. The correct one should be 

−u0 + 2u1 − u2 
= f1 (2.30)

h2 

−uN−1 + 2uN − uN+1 
= fN (2.31)

h2 

But since u0 = u(x = 0) = u(x0) = a and uN+1 = u(x = 1) = u(xN+1) = b, our equations become 

−a + 2u1 − u2 
= f1 (2.32)

h2 

−uN−1 + 2uN + −b 
= fN (2.33)

h2 

Hence, we need to correct the matrix equation (2.35) as follows 

~K~u − ~a = f (2.34) 

~K~u = f + ~a (2.35) 

~where ~a = (a, 0, ..., 0, b)/h2 . The MATLAB command K\(f + ~a) would give us ~u immediately. 

2.1.3 Convergence Analysis 

How do we know that our numerical method is accurate/converging? We benchmark it against cases where 
we already know the analytical solutions (ie. solutions that we can directly compute). As an example, 
suppose we want to solve ⎧ ⎪⎨ ⎪⎩ 

00(x)−u = sin(xπ), on (0, 1) 

u(0) = 0 (2.36) 

u(1) = 0 

Then we know the solution to the differential equation would be u(x) = sin(xπ)/π2 via direct integration. 
Then we apply the numerical method as described above to discretize the space, set up the matrix, and 
solve for the discrete values at the interior nodes, resulting in ~u = (u1, u2, ..., uN )

T as approximations 
to the value of u at ~x = (x1, x2, ..., xN ). On the other hand, we can compute the analytical solution 
~v = (sin(x1π), sin(x2π), ..., sin(xN π))

T , which are exact at ~x. Now we just have to compute how much u~ aπ2 

and ~u differ. Out of many ways to compare vectors, we choose the L2 distance measurement. The erros is 
henceforth called the L2 error, defined as 

|| −= ~v ~ vuut 

u||L2 (2.37)error2 Xn 

N 
k=1 

1 |un − vn|2 (2.38)= 

1 
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Notice the scaling by N under the square root. The fact that the second derivative finite difference approx-
imation is second-order implies that the error should be quadratic in h, the grid size, ie. 

error2 ∝ h2 (2.39) 

Taking the log on both sides, we have 

ln(error2) ∝ 2 ln(h) (2.40) 

This means that if we plot the natural log of the error with the natural log of the grid size, we should get 
a line, whose slope is the order-in this case equal to 2-of the numerical method. And they are indeed! See 
figures below 

(a) Analytic and numerical solutions are almost identical 
for N = 100 

(b) Log-Log Plot of Error vs. Number of Grids. The slope 
is about -2, since h ∝ 

N 
1 

2.2 Inverses and Delta Functions 

Often time the source of disturbance f(x) is not smooth, but can be very abrupt. Sometimes it is as abrupt 
as a delta function 

2.2.1 Delta Function 

Here is how we define the delta function 

Definition 2.1 Delta function, denoted as δa(x) = δ(x − a), is defined as ( 
0, if x =6 a 

δ(x − a) = (2.41)
∞, if x = a 

The motivation for the definition of the delta is the follows. Imagine taking the ”derivative” of the heaviside 
function, defined as follows ( 

1, if x < a 
H(x − a) = (2.42)

0, if x ≥ a 

The function does not change away from a, but at a, the function suddenly changes. This change is an finite 
change within zero time, henceforth producing an ”infinite derivative”. Here is an important fact about the 
delta function 
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Theorem 2.2 Let f(x) be a function and let a ∈ R. Then for any finite interval Ia that contains the a, Z 
f(x)δ(x − a) = f(a) (2.43) 

Ia 

Here is how you “prove” it (note: it is not mathematically rigorous at all): 

Proof: For any number �, We define the function h�(x) ( 
1 , if x ∈ [a − �, a + �]2�h�(x) = (2.44)
0, otherwise 

Then h�(x) → δa(x). But also note that Z Z 
f(x)h�(x) ≈ f(a) h�(x) (2.45) 

Ia Ia 

= f(a) (2.46) 

As � → 0, the ”≈” will become ”=”. Henceforth, Z 
f(a) = lim f(x)h�(x) (2.47)

�→0 IaZ 
= f(x) lim h�(x) (2.48)

�→0 ZIa 

= f(x)δ(x − a) (2.49) 
Ia 

2.2.2 The Delta Function Source 

We are interested in solving the following differential equation ⎧ ⎪−u00(x) = δ(x − 1/2)⎨ 
u(0) = 0 (2.50)⎪⎩ 
u(1) = 0 

The key to solving the problem is dividing up the region into separate parts. Obviously, something interesting 
happens at 1/2, which then seems to be a natural point of division. Hence we solve ( 

00−u (x) = 0L 
00 (2.51)

−u (x) = 0R 

Then we can write ( 
uL(x) = Ax + B 

(2.52) 
uR(x) = Cx + D 
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2.2.2.1 Step 1: Natural boundary conditions 

We note that 

u(x = 0) = uL(x = 0) 

= B 

= 0 

u(x = 1) = uR(x = 1) 

= C + D 

= 0 

Hence we know that B = 0 and C = −D ( 
uL(x) = Ax 

uR(x) = −Dx + D 

2.2.2.2 Step 2: Matching @ x = 1/2 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

Now let’s focus on what’s happening at x = 1/2. Whatever happens there, we assume that the solution is 
continuous there, ie. uL(1/2) = uR(1/2). Hence 

uL(x = 1/2) = uR(x = 1/2) 

A/2 = −D/2 + D 

A = D 

Then we have ( 
uL(x) = Ax 

uR(x) = −Ax + A 

2.2.2.3 Step 3: Flux Conversation 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

So far, we have not used the information about the delta function. To take that into account, we perform an 
integration on both sides of the equation. Let I1/2 = (1/2 − �, 1/2 + �), where � > 0 is a very small number. 
Then we can write Z Z 

00(x) =−u δ(x − 1/2) (2.64) 
Ia Ia 

−u 0(x)|a+� + u 0(x)|a−� = 1 (2.65) 

A + A = 1 (2.66) 

A = 1/2 (2.67) 

2.2.2.4 Write down the solution 

We can now write ( 
x , x ∈ (0, 1/2]2u(x) = (2.68)

1− 1 x + , (1/2, 1)2 2 
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2.2.2.5 A Numerical Note 

When numerically implementing the solution for the equation with a delta source (δ(x − a)), the discretized 
vector is such that it is all zeros except for at the node where x = a, when the vector should be 1. 

2.2.3 Green’s Function 

Let’s explore the solution to the following differential equations⎧ 
00(x) = δ(x − a)⎪−u⎨ 

u(0) = 0 (2.69)⎪⎩ 
u(1) = 0 

Repeating the process described below (by replacing 1/2 with a), one can get 

( 
(1 − a)x, x ∈ (0, a] 

u(x) = (2.70) 
a(1 − x), x ∈ (1/2, 1) 

Since the solution depends on both x and a (which is a fixed number), we shall re-denote it as ( 
(1 − a)x, x ∈ (0, a] 

uG(x, a) = (2.71) 
a(1 − x), x ∈ (1/2, 1) 

uG(x, a) is known as the Green’s function of 1-D Laplace’s equation with Dirichlet boundary. Here is a nice 
property of Green’s function 

Theorem 2.3 u(x), defined as, 

Z 1 

u(x) = uG(x, a)f(a)da (2.72) 
0 

solves the following differential equation ⎧ 
00(x) = f(x)⎪−u⎨ 

u(0) = 0 (2.73)⎪⎩ 
u(1) = 0 

where uG is the Green’s function 

Proof: We plug in u(x) into the differential equation 

d2u00(x) = −−u (2.74)
dx2 �Z 1 � 
d2u 

= − uG(x, a)f(a)da (2.75)
dx2

0Z 1 d2u 
= − (uG(x, a))f(a)da (2.76) 

0 dx2 Z 1 

= δ(x − a)f(a)da (2.77) 
0 

= f(x) (2.78) 
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Lastly we observe that since uG(x, a) satisfies the problem with 0 Dirichlet boundary, uG(0, a) = uG(1, a) = 0, 
whence, u(0) = u(1) = 0 

Here is an example with f(x) = 1 ⎧ 
00(x) = 1⎪−u⎨ 

u(0) = 0 (2.79)⎪⎩ 
u(1) = 0 

We know the solution is u(x) = −x2/2 + 1/2x. Now let’s compute Z 1 

u(x) = uG(x, a)f(a)da (2.80) 
0Z 1 

= uG(x, a)(1)da (2.81) 
0Z Z 1x 

= uG(x, a)da + uG(x, a)da (2.82) Z0 x 
x Z 1 

= (1 − x)ada + (1 − a)xda (2.83) 
0 x 

= −x 2/2 + 1/2x (2.84) 

Note that this is kind of a silly example, but Green’s function turns out to be extremely useful for general 
linear differential operators. We will not discuss this in more details here. 

2.3 Application of Eigenvalues to First Order Differential Equa-
tions 

We are switching gears a little and shall examine the relation between eigenvalues and differential equations. 
A quick review on solving the following linear differential equation: 

du 
= 3u (2.85)

dt 
u(0) = 1 (2.86) 

We can solve it by separation of variable, ie. 

du/(3u) = dt (2.87) 

1/3ln(u) = t + C (2.88) 

ln(u) = 3t + C (2.89) 

u(t) = C exp(3t) (2.90) 

where C is the arbitrary constant. To solve for the constant, we use the initial condition u(t = 0) = 1 and 
get that C = 1, whence 

u(t) = exp(3t) (2.91) 

Now let’s imagine the following systems of 2 differential equations (
du = 2u − vdt (2.92)
dv = −u + 2vdt 
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subject to u(0) = 7 and v(0) = 3 

These systems of linear differential equations often appear in chemical reaction and ecological modeling. 
Observe that we can re-cast the equation above into the following matrix form 

dU 
= AU (t) (2.93)

dt 

where 

U = (u(t), v(t))T (2.94)� � 
2 −1 

A = (2.95)−1 2 

Now let’s formulate the general recipe for solving the system of n differential equations in the matrix form 
dU = AU(t), where U = (u1(t), u2(t), ..., un(t))

T , subject to initial conditions U(0) = (u0, ..., un)
T .dt 

2.3.1 Recipe for Solving Coupled System of Differential Equations 

2.3.1.1 Step 1: Diagonalize the Matrix 

Let diagonalize the matrix into the following form 

A = V ΛV −1 (2.96) 

where V has n eigenvectors populate its columns and Λ has n eigenvalues populate its diagonal. 

2.3.1.2 Step 2: Transform the system of differential equations 

We plug the diagonalizing form of A into the system of differential equations and find 

dU 
= V ΛV −1U(t) (2.97)

dt 

V −1 dU 
= ΛV −1U(t) (2.98)

dt 
d(V −1U) 

= Λ(V −1U(t)) (2.99)
dt 

(2.100) 

Let W(t) = (w1(t), ..., wn(t))
T = V −1U(t). Then we have 

dW 
= ΛW (t) (2.101)

dt 
(2.102) 

The great thing about this is that because Lambda is diagonal, we have completely decoupled the system of 
equations. Hence we can write down immediately 

wi(t) = Ciexp(λit) (2.103) 

where Ci is an arbitrary constant, for each i = 1, ..., n. 
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2.3.1.3 Step 3: Transform back to the original system of differential equations 

Since W (t) = V −1U(t), U(t) = VW (t) 

2.3.1.4 Step 4: Solve for the arbitrary constants using the initial condition 

Solve for the Ci using the known value of U(0). 

Now let’s solve for the specific case of A 

2.3.1.5 Step 1 

We can diagonalize matrix A as A = V ΛV −1 , where � � 

V 
1 

= 
1 � 

1 
−1 � 

(2.104) 

Λ = 
1 
0 
0 
3 

(2.105) 

2.3.1.6 Step 2 

We formulate W = (w1(t), w2(t))
T = V U(t) and solve that w1(t) = C1 exp(t) and w2(t) = C2 exp(3t). 

2.3.1.7 Step 3 

We compute U(t) = VW (t) and conclude that U(t) = (C1 exp(t) + C2 exp(3t), C1 exp(t) − C2 exp(3t))
T 

2.3.1.8 Step 4 

Using U(0) = (7, 3), we get that C1 = 5 and C2 = 2. We are done. 

2.3.2 An Expanded Notion of Eigenvalue and Eigenvector 

We recall the definition of eigenvalues and eigenvectors. For a matrix A, eigenvalues λ and eigenvector v 
satisfy 

Av = λv (2.106) 

As we discussed, we can think of a matrix A as a mapping between two geometric spaces. But then if 
we expand the definition of mapping beyond matrices, we can also expand our notion of eigenvalues and 
eigenvectors. For example, consider the second derivative − d

2 
It is a mapping between a function anddx2 . 

2another function, eg. it takes x and spits out 2x. We can talk about the eigenvalue, η, and eigenvector of 
− d

2 

dx2 f(x) (which is a function) as 

d2u(x)− u = ηu(x) (2.107)
dx2 

Hence a better term for u(x) would be eigenfunctions. For the zero Dirichlet boundary conditions, u(0) = 
u(1) = 0, we know that u(x) = sin(kπx) and η = k2π2 , for all k = 1, 2, 3.... Hence the second derivative 
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operator with zero Dirichlet boundary condition has an infinite number of eigenfunctions and eigenvalues. 

Keep this concept in mind as it will become extremely useful later on in higher dimensional Laplace’s equation 
and Fourier analysis. 
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