
18.085/18.0851 Computational Science and Engineering I Summer 2020 

Week 4 (June 29th-July 3rd) 

Lecturer: Richard Zhang Scribes: Richard Zhang 

4.1 Oscillation by Newton’s Law 

In the previous lecture, we largely examine the behavior of spring-mass systems at static equilibrium. Now 
we are letting our system vibrate 

4.1.1 One Mass and One Spring 

We start with one mass m hanging from one spring with Hooke’s constant c. The top is fixed, while the 
bottom is free. We let u(t) be the displacement of the mass away from equilibrium. In that case, we can 
write down Newton’s second law, which relates forces with mass times acceleration 

d2u 
m + cu(t) = 0 (4.1)

dt2

u(0) = 0 (4.2) 

u 0(0) = 1 (4.3) 

We propose the “ansatz” solution: 

u(t) = A cos(αt) + B sin(βt) (4.4) 

We plug the ansatz into the differential equation 

c d2u − u = (4.5) 
m dt2

c c − A cos(αt) − B sin(βt) = −Aα2 cos(αt) − Bβ2 sin(βt) (4.6) 
m m 

Matching the sine and cosine terms, we will obtain 
c 

α2 = (4.7) 
m
c 

β2 = (4.8) 
m p

c cHenceforth, α2 = β2 = ω2 = , whence α = β = and m m 

u(t) = A cos(ωt) + B sin(ωt) (4.9) 

The constants, A and B, are determined by the initial conditions. For example, if we let u(0) = 0 and 
u0(0) = 1, then 

u(0) = A (4.10) 

= 0 (4.11) 

u 0(0) = Bω cos(ω ∗ 0) (4.12) 

= 1 (4.13) 

4-1
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Hence B = 1 and A = 0, and therefore we can write the solution as 

1 
u(t) = sin(ωt) (4.14)

ω 

This tells me that the solution is oscillating forever if we give it an initial velocity of 1. 

4.1.1.1 Conservation of Energy 

1 1We define to total energy as P (u) = m(u0(t))2 + c(u(t))2 , or in other words, kinetic plus potential energy. 2 2 
Let’s verify that in this case, the total energy is conserved 

P (u) = 
1 
m(u 0(t))2 +

1 
c(u(t))2 (4.15)

2 2 
1 1 c 

= m cos 2(ωt) + sin2(ωt) (4.16)
2 2 ω2

1 1 m 
= m cos 2(ωt) + c sin2(ωt) (4.17)
2 2 c 

=
1 
m(cos2(ωt) + sin2(ωt)) (4.18)
2 
1 

= m (4.19)
2 

The answer makes a lot of sense: initially we give the system a ”kick” by endowing it with an initial velocity 
1 2 1of 1. At the beginning there is no potential energy. So the total energy is just mv = m, and it stays 2 2 

that way due to the conservation of energy. 

4.1.2 Line of Masses and Springs 

Let’s analyze the vibration of n masses and (n + 1) springs with fixed-fixed ends. Following the same 
framework as developed in the previous lecture, we define the stiffness matrix K = AT CA, where A ∈ 
Rn×(n+1) and C ∈ Rn×n such that 

Aij =


1, i = j

−1, i− j = 1

0, otherwise

Cij =

{
ci, i = j

0, otherwise
(4.20)

The force balance equation says that the inertial force plus the spring internal force should cancel out any
applied force from the outside, that is

Mu′′ +Ku = f(t) (4.21)

where

Mij =

{
mi, i = j

0, otherwise
(4.22)

We should like to solve for the displacement of each mass u(t) = (u1(t), ..., un(t))T subject to an external
force of f(t) = (f1(t), ..., fn(t))T .
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4.1.2.1 Zero External Force

First we will consider the system when there is no external force, ie. f(t) = 0. Then the equation, upon
some algebraic manipulation, would look like

Mu′′ +Ku = 0 (4.23)

u′′ +Gu = 0 (4.24)

where G = M−1K. Similar to the first order system of differential equations, we shall use eigendecomposi-
tion to solve this second order system of differential equations.

First we let G = V ΛV −1, where Λ = diag(λ1, ..., λn) and V is the eigenvector matrix. We then plug the
decomposition into the differential equation

′′ (4.25)

(4.26)

(4.27)

u + V ΛV −1u = 0

(V −1u)′′ + Λ(V −1u) = 0

Let ũ = V −1u. Then we have the decoupled system of differential equations

ũ′′ + Λũ = 0

Hence we know that ũi
′′ + λiũi = 0, for each i = 1, ..., n, whence ũi = Ai cos(

√ √
λit) + t) +Bi sin( λit).

Transforming it back to u, we let v1, ..., vn be the columns of V , aka. the eigenvectors of the matrix G and
multiply ũ by V to obtain

u(t) =


u1(t)
u2(t)
...

un(t)

 =
n∑
i=1

(Ai cos(
√
λit) +Bi sin(

√
λit))vi (4.28)

Let us do an example with two identical masses m1 = m2 = m and three identical springs c1 = c2 = c.
Then, as we know from the previous lecture

K = c

[
2 −1
−1 2

]
(4.29)

M = m

[
1 0
0 1

]
(4.30)

whence

G = M−1K (4.31)

=
c

m

[
2 −1
−1 2

]
(4.32)

Diagonalizing the G matrix, we get that

λ1 =
c

m
, v1 = [1, 1]T (4.33)

λ2 =
3c

m
, v2 = [1,−1]T (4.34)

Therefore

u(t) =

[
u1(t)
u2(t)

]
=

(
A1 cos

√
c

m
t+B1 sin

√
c

m
t

)[
1
1

] (
+ A2 cos

√
3c

m
t+B2 sin

√
3c

m
t

)[
1
−1

]
(4.35)

Two comments about the result above
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• λ2 is the faster mode, indicating a more rapid oscillation. By the same token, λ1 is the slower mode,
indicating a slower oscillation

• v1 and v2 are known as the normal modes. v1 = [1, 1]T moves the masses in the same direction, while
v2 = [1,−1]T moves the masses in the opposite direction.

The case becomes more in√teresting with√more masses and springs. For each eigenvector, the corresponding
normal mode ui = (Ai cos λit+Bi sin λit)vi is a standing wave. When we add up all the normal modes,
we end up with a traveling wave. This will be further explored in the subsequent course (18.086).

4.1.2.2 Non-Zero External Force

Now suppose that we exert an external force f(t) = (f1(t), ..., fn(t))T . More often than not, all components

of f would oscillate at the same frequency ω0. Then we can solve for the system Ku′′ + Mu = f~0 cosω0t,
where f~0 is an n−dimensional constant vector, ie.

f~0 =

f0f0
...f0

 (4.36)

The solution will involve ω0 as well as the n natural frequencies ωi =
√
λi from the eigenvalues of M−1K

The critical case of resonance happens ω0 is very close to one of the natural frequencies. This is known
as resonance. When we push a swing, if we want push it as high as possible, we would often go along the
frequency of the spring. When we walk on a bridge, we would not want it to oscillate, and therefore a good
engineer would pick ω0

2 away from any of the λi. This is apparently not the case for the Millenium Bridge
in London, whose ignored a sideways mode.

√
c
m .Let’s study a simple equation mu′′ + cu = cosω0t, where ω0 is very close to the natural frequency λ =

It turns out that

• When ω0 is close to λ, u(t) = cosλt−
2
cos

2
ω0t

m(ω0−λ )

• When ω0 is equal to λ, u(t) = t sinω
0

0t
2mω

You will explore a bit more of the math behind the solutions in the homework.

4.2 A Quick Intro to Complex Numbers

I would like to spend some time talking about complex numbers. Complex numbers play a key role in
mathematics. Moreover, they will be the central tool for our study in circuit theory, nonlinear dynamics,
and later on Fourier analysis. We shall use this lecture to gain a working knowledge of complex numbers

4.2.1 Imaginary Number

Everything starts wi the seemingly farcical attempt to take the square root of −1. Since there is no real√th
number that equals −1, we shall call this number the imaginary number. Mathematicians and scientists
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√ √
like to denote the imaginary number as i = −1, while engineers prefer the notation j = −1. 

Similar to real numbers, we would like to endow the imaginary number with an axis, known as the imaginary 
axis, and a sign, plus and minus. The fundamental unit on this imaginary axis would be i, which can be √ 
multiplied by scalar real numbers, eg. 1.5i, 3i, − 17i, etc. 

Note that i2 = −1, i3 = −i, i4 = 1, etc. 

4.2.2 Complex Numbers 

Now that we have defined these complex numbers, we would like to integrate and broaden our definition of 
numbers. We’ve been dealing with real numbers all the way through. Now we shall define something called 
complex numbers. Denoted as C, a typical complex number z ∈ C looks like 

z = a + ib (4.37) 

a = r cos(θ)b = r sin(θ) (4.38) 

Hence, z can also be written as 

z = r cos(θ) + ir sin(θ) (4.39) 

Using Taylor expansion, we can motivate the following definition of the Euler representation of the complex 
number z 

Definition 4.1 The Euler representation of a complex number z ∈ C is defined as 

iθ z = re (4.40) 

where r represents its magnitude and and θ represents the polar angle on the real-imaginary plane. This 
polar representation is equivalent to the Cartesian representation via 

iθ z = re (4.41) 

= r cos(θ) + ir sin(θ) (4.42) 

Euler’s representation of complex number is very useful in proving trignometric identities. For instance, let’s 
i(x+y)prove sin(x+y) = sin(x) cos(y)+sin(y) cos(x). First we know that sin(x+y) is the imaginary part of e , 

a

where a ∈ R is known as the real part, and b ∈ R is known as the imaginary part. If we put the real and
imaginary axis at 90o to√each other, we can represent (

b
this) complex number z as a vector. This vector would

have a magnitude r = a2 + b2 and angle θ = arctan .

4.2.2.1 The Euler Representation

Notice that
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i(x+y)since e = cos(x + y) + i sin(x + y). We can also denote it as sin(x + y) = Im(ex+y ). But then 

i(x+y))sin(x + y) = Im(e (4.43) 
ix iy)= Im(e e (4.44) 

= Im((cos(x) + i sin(x))(cos(y) + i sin(y))) (4.45) 

= Im(cos(x) cos(y) + i sin(y) cos(x) + i sin(x) cos(y) − sin(x) sin(y)) (4.46) 

= Im((cos(x) cos(y) − sin(x) sin(y)) + i(sin(x) cos(y) + sin(y) cos(x))) (4.47) 

= sin(x) cos(y) + sin(y) cos(x) (4.48) 

4.2.2.2 Complex conjugate 

Definition 4.2 For a complex number z = a + ib, the complex conjugate, z̄, is defined as z̄ = x − iy 

4.2.3 Functions of A Complex Variable 

Almost all rules of real-variable calculus carries over to complex variable calculus. For instance, if z = x + iy 

2 2• f(z) = z = (x + iy)2 = x2 + 2(x)(iy) + (iy)2 = x2 + 2ixy − y = (x2 − y2) + i(2xy)

• f 0(z) = 2z = 2(x + iy) = 2x + i2y

The modulo operation, | · |2 , computes the magnitutde of z and is defined as 

d2u 
m + cu(t) = 0 (4.49)

dt2

And this time we assume that u(t) = Aeibt , where A, a, and b are all functions of time. Plugging it in to the 
differential equation, we obtain that 

ibt−mAb2 e + cAeibt = 0 (4.50) 

−mb2 + c = 0 (4.51) 
c 

b2 = (4.52) 
m 

√ √
Definition 4.3 For z = x+ iy, |z| = z̄ · z = x2 + y2

Note that |z|2 6= (z)2.

All functions of a complex variable can be evaluated by the Taylor expansion of the function.

4.2.4 Representation of Solutions Using Complex Variables

Because of the magical Euler’s formula, we can conveniently represent the solutions of differential equations
using complex exponentials. Let’s re-solve the harmonic oscillator problem
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m and b2 = − c
mHence, b1 = c , whence the solution can be written as

(4.53)u(t) = A1e
b1t +A2e

b2t

If we subject the oscillator to an initial condition of u(0) = 0 and u′(0) = 1, we obtain that

(4.54)A1 +A2 = 0

A1ib1 +A2ib2 = 1 (4.55)

And we obtain that A1 = 1
2i

√
m/c and A2 = − 1

2i

√
m/c. Then we can write the solution as

u(t) =
1

2i

√
m/c(eb1t − eb2t) (4.56)

=
1

2i

√
m/c(cos(b1t) + i sin(b1t)− cos(b2t) + i sin(b2t)) (4.57)

But since b1 = −b2,

u(t) =
1

2i

√
m/c(cos(b1t) + i sin(b1t)− cos(b2t) + i sin(b2t)) (4.58)

=
√
m/c sin

(√
c/mt

)
(4.59)

Exactly as we had before

4.3 Complex Eigenvalues

It turns out that eigenvalues can be complex as well and play a very important role. Take a look at the
following matrix

A =

[
1 −5

3

]
(4.60)

1

The characteristic equation that yields the eigenvalues is

(1− λ)(3− λ) + 5 = 0 (4.61)

λ2 − 4λ+ 8 = 0 (4.62)

λ =
4±
√

16− 32

2
= 2± 2i (4.63)

To show the significance of complex eigenvalues, we solve the coupled system of equations:

(4.64)x′1 = x1 − 5x2

x′2 = x1 + 3x2 (4.65)

which corresponds the matrix formulation

~x′ = A~x (4.66)

Let λ1 = 2 + 2i that corresponds to the eigenvector v1 and λ2 = 2− 2i that corresponds to the eigenvector
v2. As before, we shall diagonalize matrix A into V ΛV −1, where

λ = diag(λ1, λ2) (4.67)

V =
[
v~1 v~2

]
(4.68)
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We can then write

V −1~x′ = ΛV −1~x (4.69)

Let ~y = V −1~x. We then have the equation

y′ = Λy (4.70)

which is decoupled. Hence, we can write

(4.71)y1(t) = y1(0)e(2+2i)t

y2(t) = y2(0)e(2−2i)t (4.72)

where y1(0) and y2(0) are determined by the initial condition (which we did not specify). Then ~x can be
written down as

x = V y (4.73)[
x1
x2

]
=
[
v~1 v~2

] [y1
y2

]
(4.74)

By specifying the initial conditions and computing the eigenvectors, we can get the exact answers. But
instead of doing that, let’s examine the solutions of y a bit more

(4.75)y1(t) = y1(0)e(2+2i)t

y2(t) = y2(0)e(2−2i)t (4.76)

What is e2+2i doing to the point y1(0)? Well according to Euler’s formula,

e(2±2i)t = e2te±2it (4.77)

= e2t(cos(2t)± i sin(2t)) (4.78)

e2t represents the magnitude change as a function of t, which in this case is exponentially growing. cos(2t) +
i sin(2t) corresponds to pure rotation with a frequency of π. Hence, on the phase space, this represents an
outward spiral, which is unstable.

On the other hand, imagine if we get an eigenvalue of −2 ± 2i. Then upon exponentiation, it becomes
e−2te±2it, whose magnitude is exponentially decreasing. Hence, on the phase space, this corresponds to an
inward spiral, which is stable.

We can summarize our findings as follows: for a complex eigenvalue λ out of the matrix A that appears in
~x′ = A~x

• The real part of λ controls the stability of the dynamical system: a positive real part means the system
is exponentially growing and spiraling outward on the phase plane, indicating instability; a negative real
part means the system is exponentially decreasing and spiraling inward on the phase plane, indicating
stability

• The imaginary part of λ controls the frequency of rotation of the dynamical system on the phase space.
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