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Lecturer: Richard Zhang Scribes: Richard Zhang 

3.1 Positive Definite, Negative Definite, Semi-definite, and Indef-
inite Matrices 

While numbers are easier to assign a positive or negative sign, matrices are not. What exactly do we mean by 
a positive or negative matrix? More fundamentally, why do we even care to define such notions for matrices? 
In this section, we shall present the definiteness of matrices. First we define what it is 

Definition 3.1 A ∈ Rn×n is a positive definite matrix if the quadratic form, uT Au > 0, for every vector 
u ∈ Rn .

Equivalently, we can also introduce negative definite, semidefinite, indefinite matrices 

Definition 3.2 A ∈ Rn×n is a positive or negative semi-definite matrix if the quadratic form, uT Au ≥ 0 or 
uT Au ≤ 0, respectively, for every vector u ∈ Rn . 

Definition 3.3 A ∈ Rn×n is a indefinite matrix if the quadratic form, uT Au, can have any sign, where 
u ∈ Rn .

Let’s get a feeling of what each of each type of matrices really entails 

3.1.1 Positive/Negative Definite 

Here is a useful fact that you might already have discovered from the previous homework 

Theorem 3.4 If a matrix is positive/negative definite, then all of their eigenvalues are positive/negative. 

A classic example of a positive definite matrix is the second derivative finite difference matrix, K. Let’s 
multiply out the matrix by an arbitrary vector u = [u1, u2]

T . � � � �� � 2 −1 u1 2 2 u1 u2 = 2u1 + 2(u1 − u2)
2 + 2u (3.1)−1 2 u2

2 

The quadratic form is never nonpositive. 

3.1.2 Semidefinite Matrix 

Theorem 3.5 If a matrix is positive/negative semidefinite, then all of their eigenvalues are non-negative/non-
positive. 
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Let’s take B, defined as. 

� � 
1 −1 

B = (3.2)−1 1 

Let’s multiply out the matrix by an arbitrary vector u = [u1, u2]
T . � � � �� � 1 −1 u1 u1 u2 = (u1 − u2)

2 (3.3)−1 1 u2 

Notice that the quadratic can be either zero or positive. 

3.1.3 Indefinite matrix 

Theorem 3.6 The eigenvalues of an indefinite matrix can have any signs. 

Let’s take M , 

� � 
1 −3 

M = (3.4)−3 1 

Multiplying out the quadratic form, we have � � � �� � 1 −3 u1 2 u1 u2 = (u1 − 3u2)
2 − 8u (3.5)2−3 1 u2 

Notice that the quadratic form can take any signs, depending on the vector u. 

Here is another nice fact about positive, definite, symmetric matrices 

Theorem 3.7 Let A ∈ Rn×n be a positive, definite symmetric matrix. Then all eigenvalues of A are positive 
and real. All eigenvectors are orthogonal. 

3.1.4 A Quick Note about Positive, Definite, Symmetric (PSD) Matrices 

Positive, definite, symmetric matrices enjoy the nice property that all of their eigenvalues are positive and 
real and all of their eigenvectors are orthogonal to each other. If all eigenvectors are orthogonal, we can 
normalize them to make them orthonormal. Then when we formulate the diagonalized matrix, V , V becomes 
an orthogonal matrix (with orthonormal columns). Here is a nice property of orthogonal matrices 

Theorem 3.8 Let A ∈ Rn×n be an orthogonal matrix. Then A−1 = AT 

3.1.5 Second Derivative Test for Higher Dimension 

Here is an application of positive definite matrices. Let f(x1, ..., xn) : Rn → R be a smooth function. Then 
we can introduce the Hessian matrix, H ∈ Rn×n , as 

∂f2 

Hij = Hij = (3.6)
∂xi∂xj 
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Theorem 3.9 Let f(x1, ..., xn) : Rn → R be a smooth function and let H be the Hessian matrix defined at 
a critical point, x, ie. rf(x) = 0. Then 

• If H(x) is positive definite, then x is a local minimum 

• If H(x) is negative definite, then x is a local maximum 

• If H(x) is indefinite, then x is a saddle point 

• If H(x) is semidefinite, then the test is inconclusive. 

3.2 Matrix Decomposition: SVD, QR, and LU 

Matrix decomposition refers to ways to rewrite a matrix as the product of several matrices. The diagonal-
ization of A, A = V ΛV −1 is a form of matrix decomposition. However, the ability to diagonalize a matrix 
completely depends on whether all of A’s eigenvectors are linearly independent or not. Plus, the concept 
ceases to make sense for non-square matrices. Hence, we need additional methods to decompose a matrix. 
The most popular three include 

• QR factorization: A = QR = orthogonal times upper triangular 

• LU decomposition: A = LU = lower triangular times upper triangular 

• Singular Value Decomposition (SVD): A = UΣV T = orthogonal matrix * singular values * orthogonal 
matrix 

For this lecture, we will only talk about SVD. You can find information about the other decompositions in 
the textbook. 

3.2.1 The Mechanics of SVD 

For A ∈ Rm×n , A = UΣV T has the following properties 

• U ∈ Rm×m the eigenvector matrix of AAT 

• V ∈ Rn×n the eigenvector matrix of AT A 

• Σ ∈ Rm×n the diagonal matrix whose values on the diagonal equal the square roots of the eigenvalues 
of AT A 

Let’s do SVD on A defined as below 

� � 

A = 
3 
2 
2 
3 

2 
−2 (3.7) 
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3.2.1.1 Step 1: Compute AT A and AAT 

We compute ⎡ ⎤ 
13 12 2 

AT A = ⎣12 13 −2⎦ (3.8) 
2 −2 8 

� � 

AAT = 
17 8 

(3.9)
8 17 

√√ 

Since the eigenvalues of AT A are much easier to compute than those of AAT , we compute the eigenvalues 
of AA and obtain that λ1 = 25, λ2 = 9. 
The eigenvalues of AAT should then be 25, 9 and 0. 

T T3.2.1.2 Step 2: Compute the eigenvalues of A A AAor 

T T3.2.1.3 Step 3: Compute the eigenvectors of A A AA and stack them into U and Vor up 

√ 

matrices 

√ 

We compute the eigenvectors of AT A and AAT before stacking them up side by side into U and V . Note 
that they must be normalized. As such, ⎡ ⎤" # 1 1 01 1 2 2⎣ √1 − √1 √4 ⎦2 2U , V (3.10)= = 

√√ 

√√ 

√ 

√√

√ 

1 − 1 
2 2 2 − 2 − 1 

3 3 3 

3.2.1.4 Step 4: Write everything down 

We then conclude that A = UΣV T , where ⎡ ⎤" # 1 1 
1 1 

1 − 1 

18 18 18 

� � 0 
2 25 0 0 

, V T = ⎣ √1 − √1 √4 ⎦2 2U , Σ = (3.11)= 
0 3 0 18 18 18 

2 − 2 − 1 
3 3 

2 2 
3 

3.2.1.5 Application of SVD: Image Process 

All images are made of pixels, which we can convert to matrices. The singular values of the matrix captures 
the key information about an image. “Killing” some of the singular values would effectively reduce some of 
the information, making the image “blurry”. See the code demonstration for more details. 

3.3 Numerical Linear Algebra 

This section is a short introduction to numerical linear algebra. As there is a whole separate course on it, 
we cannot get into the details of many topics. The purpose is to give you a flavor of the subject and get 
familiar with some of the terminology and algorithm used in the various scientific and engineering subjects. 
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A large-if not entire-chunk of numerical linear algebra-is concerned with solving linear systems of Ax = b. 
However, often time, A is not a square matrix. This begs the question of what it means to solve Ax = b, for 
which we introduce the concept least square 

3.3.1 Least Square Problem 

Definition 3.10 For any matrix A ∈ Rm×n and b ∈ Rm , x is the solution to the least square problem 
Ax = b if u = x minimizes ||b − Au||2 , for all u ∈ Rn Analytically, we can derivative that the least-square 
estimate is the solution to the normal equation 

AT Au = AT b (3.12) 

where AT A is a square symmetric matrix and therefore is invertible. 

Here is an example: suppose that we have measurements b = 1, 9, 9, 21 at four positions x = 0, 1, 3, 4. We 
believe that the relation between the position and measurements are linearly related, and therefore proposes 
the linear relation y = C + Dx. Then we can formulate the equation ⎤⎡⎤⎡ 

1 0 1 ⎥⎥⎦ 

�� 
C 
D 

= 
⎢⎢⎣ 

⎢⎢⎣ 
⎥⎥⎦ (3.13) 

1 1 
1 3 

9 
9 

1 4 21 

Solving the normal equation, we obtain that C = 2 and D = 4. 

3.3.2 QR Factorization 

Described as one of the most important algorithms in numerical linear algebra, the QR factorization factors 
a square matrix A into an orthogonal matrix Q and an upper triangular matrix R. Once QR is complete, 
we can then solve the original linear problem via 

Ax = b (3.14) 

QRx = b (3.15) 

Rx = QT b (3.16) 

the last line of which can be solved using backward substitution. Additionally, it can also solve the least 
square problem by solving the normal equation AT Au = AT b via 

(QR)T QRu = (QR)T b (3.17) 

RT Ru = RT Q6Tb (3.18) 

Ru = QT b (3.19) 

Since R is upper triangular, we can solve the linear system in the last line using backward substitution. The 
key is how to generate the matrices Q and R. To that end, we would like to present the Gram-Schmidt 
algorithm 
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3.3.2.1 Gram-Schmidt Algorithm 

The Gram-Schmidt algorithm gives a simple construction of the columns of Q (denoted as qi for the ith 

column) from the columns of A (denoted as ai for the ith column). To obtain Q, we perform 

u1 
u1 = a1, q1 = (3.20)

||u1||
u1 · a2 u2 

u2 = a2 − q1, q2 = (3.21) 
u1 · u1 ||u2||

u1 · a3 u2 · a3 u3 
u3 = a3 − q1 − q2, q3 = (3.22) 

u1 · u1 u2 · u2 ||u3|| 
... (3.23) 

k−1X ak · uj uk 
uk = ak − qj , qk = (3.24) 

uj · uj ||uk||j=1 

Once the columns of Q are obtained, we can proceed with calculating R = QT A. 

This numerical scheme turns out to be unstable due to round-off errors. To make them stable, we will need 
a slightly modified Gram-Schmidt algorithm. We will not cover it in this class. 

3.3.3 Condition Number 

The condition number of a matrix A characterizes the sensitivity of the linear system Ax = b. In other 
words, if I change b by a small amount, eg. Δb, how much do I change x, ie. how big is Δx. The condition 
tries to capture the multiplier on Δx as a result of Δb. By definition, 

Definition 3.11 The condition number of a matrix A, denoted as κ(A) or c(A), is defined as: κ(A) = 
||A|||||A−1|| 

where ||A||| = max ||Ax|| is also known as the norm of the matrix. This definition, however, is often not 
||x||=1 

very convenient in computing the actual condition number of the matrix. It is more common to use the 
derived notion of condition number as 

Largest Singular Value 
κ(A) = (3.25)

Smallest Singular Value 

As an example, suppose we have the following matrix � � 
1 7 

A = (3.26)
0 1 

and the vector � � 
b = 7 1 (3.27) 

Solving Ax = b, we obtain that x = [0, 1]T . Now we shift b by [0, 0.1]T and let b2 = [7, 0.9]T . Then we obtain 
that x2 = [−6.3, 0.9]T . We compute 

√||Δx|| 
= 0.1 50 (3.28)

||x||
||Δb|| 0.1 

= √ (3.29)
||b|| 50 
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So a little change in b triggers the solution to change by a factor of 50. 

Roughly speaking, in solving Ax = b, the computer loses log(κ(A)) number of digits. It is common for the 
condition number of a second difference matrix to be on the scale of O(1/Δx2). This is why a finer mesh 
does not always lead to a more accurate answer. Once the condition number gets too large, various sources 
of errors start amplifying their effects, rendering the entire solution garbage. 

3.4 A Quick Note about Errors 

There are two types of errors in numerical methods: 

• Round-off error: errors that occur due to finite representation of series. 

• Floating point error: errors that occur due to finite representations of numbers 

Both contribute to the errors of our numerical methods. It is therefore crucial that our methods remain 
stable. We will talk further about what they mean in the future. For now, here are a few tips when 
implementing numerical algorithms 

• Avoid subtracting two very small numbers 

• Avoid adding or multiplying very large numbers 

3.5 Equilibrium and the Stiffness Matrix 

We are moving into a new chapter on a general framework for applied mathematics. There are a wide range 
of applications. For this lecture, we are focusing on the spring-mass system, one of the simplest models in 
mathematics and physics that nonetheless finds itself everywhere in natural and engineering problems, from 
fluid mechanics to quantum mechanics. 

3.5.1 A Line of Spring 

Imagine three masses hung vertically from the ceiling and connected by springs. While the top mass m1 is 
fixed from the ceiling, the bottom mass m2 may be fixed to the ground or hung freely (in which case there 
is no spring). The former is known as the fixed-fixed end, while the latter is called the fixed-free end. You 
will explore the latter in the homework. 

Our goal is to related the displacement of each mass, u = (u1, u2, u3)
T with the external force on each 

mass, f = (f1, f2, f3)T . To go from displacement of masses to their external forces, we must jump through 
elongations of springs and the internal forces in the springs. In summary, we have 

• u = displacement of n masses 

• e = elongations of m springs 
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• w = Internal forces in m springs 

• f = External forces on n masses 

Here are the steps 

3.5.1.1 Step 1: Displacement → Elongations 

The elongation e refers to how far the springs are extended. Once the springs are hung vertically, gravity 
starts pulling down and the masses fall by u1, u2, and u3. If mass 2 drops by u2 and mass 1 drops by u1, 
the spring stretches by u2 − u1, whence 

e1 = u1 

e2 = u2 − u1 

e3 = u3 − u2 

e4 = −u3 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

We can then write down the matrix equation ⎤⎡⎤⎡ 
e1 −1 0 0 ⎤⎡ ⎢⎢⎣e2 

e3 

⎥⎥⎦ = 
⎢⎢⎣ 
−1 1 0 
0 −1 1 

⎣⎥⎥⎦ 

u1 

u2
⎦ (3.34) 

u3 e4 0 0 −1 

Let’s call this matrix A. 

3.5.1.2 Step 2: Elongations → Internal Forces 

The equation that connects the forces in the springs with elongations is empirical, known as the Hooke’s 
law. It says that the force of a spring is proportional to its elongation, and the proportionality constant is 
known as the spring constant. Let ci be the spring constant of the ith spring. We then know that wi = ciei, 
whence ⎤⎡⎤⎡⎤⎡ 

w1 c1 0 0 0 e1 ⎢⎢⎣ 
w2 

w3 

⎥⎥⎦ = 
⎢⎢⎣ 
0 c2 0 0 
0 0 c3 0 

⎢⎢⎣ 
⎥⎥⎦ 

e2 

e3 

⎥⎥⎦ (3.35) 

w4 0 0 0 c4 e4 

Let’s call this matrix C. 

3.5.1.3 Step 3: Internal Forces → External Forces 

Finally, we know that the forces need to balance, ie. the internal and external forces have to balance. Since 
each mass is in equilibrium, pulled up by a spring of force wj and down by wj+1, the external force on mass 
j, fj , must be fj = wj − wj+1, whence 

f1 = w1 − w2 (3.36) 

f2 = w2 − w3 (3.37) 

f3 = w3 − w4 (3.38) 

(3.39) 
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We can then write down the matrix equation ⎡ ⎤⎡ ⎤ ⎡ ⎤ u1 − 0 
f1 −1 0 0 0 

u2 − u1⎣f2⎦ = ⎣ 0 1 −1 0⎦ ⎢⎢ ⎥⎥ 
(3.40)⎣ ⎦u3 − u2f3 0 0 −1 0 

0 − u3 

This matrix is exactly AT . 

3.5.1.4 Step 4: Putting everything together 

To relate f with u, we multiply everything above together and obtain that 

f = AT CAu (3.41)⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤c1 0 0 0 −1 0 0 
f1 −1 0 0 0 u10 c2 0 0 −1 1 0⎣f2⎦ = ⎣ 0 1 −1 0⎦⎢⎢ ⎥⎥⎢⎢ ⎥⎥⎣u2

⎦ (3.42)⎣ ⎦⎣ ⎦0 0 0 0 −1 1c3f3 0 0 −1 0 
0 0 0 c4 0 0 −1 

We call the matrix K = AT CA the stiffness matrix of the system. When C = 
second difference matrix of dimension 3. Therefore, we can conclude that 

u = K−1f 

Here are some nice properties of K 

• K is tridiagonal, because mass 3 is not connected with mass 1 

• K is symmetric, because C is symmetric 

• K is positive definite, because A has independent columns 

• K−1 is a full matrix with all positive entries 

u3 

I3, K becomes exactly the 

(3.43) 

For our example above, assume that ci = c and mi = m (ie. all springs and masses are identical). Since 
gravity is the only external force, we let f = (mg, mg, mg), whence, 

u = K−1f ⎡ ⎤ ⎡ ⎤ 
(3.44) 

3
1 

= ⎣2 
4c 

1 ⎡ 

2 
4 
2 ⎤ 

1 mg 
2⎦ ⎣mg⎦ 

3 mg 
(3.45) 

1.5 
mg 

= ⎣2.0⎦ (3.46) 
c 

1.5 
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We can also compute the elongation vector using e = Au 

e = Au (3.47)⎤⎡ 
1 0 0 
−1 1 0 
0 −1 1 

⎤⎡ 
1.5⎢⎢⎣ 

⎥⎥⎦ 
mg ⎣ ⎦2.0 (3.48)= 
c 

1.5 
0 0 −1 ⎤⎡ ⎢⎢⎣ 

1.5 
0.5 
−0.5 

⎥⎥⎦ 
mg 

(3.49)= 
c 

−1.5 

Note that all elongations add up to 0, which makes sense since both ends are fixed. 

3.6 Inverted Pendulum 

Let’s examine the problem of an inverted pendulum with a spring attached to the connecting rod. We can 

dθ2 

write down the total energy as 

P (u) = 
1 
cθ2 

2 
+ mgL cos(θ) (3.50) 

Hence, equilibrium is achieved when dP 
dθ = cθ − mgL sin(θ) = 0. 

Note that θ = 0 is always a solution. The questions are 

• Is the solution stable? 

• Are there other solutions? 

• If so, are they stable? 

To answer the first question, we run the second derivative test by computing 

d2P 
c − mgL cos(θ) (3.51) 

This value is positive when c > mgL and negative when c < mgL. Since positive second derivatives indicate 
local minimum, θ = 0 is stable for c > mgL. When the pendulum is too light and/or the spring is too strong, 
the ball just sits on top nicely. 

The second question can be answered by realizing that dP/dθ can also achieve zero away from θ = 0 when 
c/mgL < 1. In which case, θ = 0 becomes unstable along with the rise of two new critical points θ∗ such 
that mgL sin(θ∗) = cθ∗ . The two θ∗ can be calculated numerically to render positive second derivatives, 
which suggests that the new critical points are local minima. 

The transition from one stable minimum at the origin to a unstable solution with two new stable solutions 
is called “pitchfork bifurcations”, or second-order phase transitions by physicists. It is a ubiquitous process 
found everywhere in nature, from classical mechanics to quantum mechanics. 
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