Key Ideas in Linear Algebra

Gilbert Strang

MIT

 $\boldsymbol{2019}$

$$A\boldsymbol{x} = \begin{bmatrix} | & | \\ \boldsymbol{a}_1 \cdots & \boldsymbol{a}_n \\ | & | \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}_1 \end{bmatrix} x_1 + \cdots + \begin{bmatrix} \boldsymbol{a}_n \end{bmatrix} x_n$$

 $A \boldsymbol{x}$ is a combination of the columns \boldsymbol{a}_1 to \boldsymbol{a}_n

Column space C(A) = all combinations of the columns

 $A \boldsymbol{x} = \boldsymbol{b}$ has at least one solution \boldsymbol{x} when \boldsymbol{b} is in $\mathbf{C}(A)$

Matrix multiplication : Columns times rows

$$AB = \begin{bmatrix} \boldsymbol{a}_1 \dots \boldsymbol{a}_n \end{bmatrix} \begin{bmatrix} & \boldsymbol{b}_1^* \\ & \vdots \\ & \boldsymbol{b}_n^* \end{bmatrix} = \boldsymbol{a}_1 \boldsymbol{b}_1^* + \dots + \boldsymbol{a}_n \boldsymbol{b}_n^*$$

Sum of rank-one matrices $oldsymbol{a}_i oldsymbol{b}_i^* = \mathbf{column\ times\ row}$

Example
$$\begin{bmatrix} 1\\4\\3 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -1\\8 & 4 & -4\\6 & 3 & -3 \end{bmatrix}$$

Column space = all multiples of $\begin{bmatrix} 1\\4\\3 \end{bmatrix}$ Row space = all multiples of $\begin{bmatrix} 2\\1\\-1 \end{bmatrix}$

Dimension of column space = 1 = Dimension of row space: Rank = 1

Basis for the column space – by example

$$A = \left[\begin{array}{rrrr} 6 & 2 & 4 \\ 4 & 2 & 2 \\ 3 & 2 & 1 \end{array} \right]$$

Column 1 is not zero – it goes in the basis

Column 2 is not a multiple of column 1 - put into the basis

Column 3 is (Column 1) – (Column 2): Dependent column

Column basis matrix $C = \begin{bmatrix} 6 & 2 \\ 4 & 2 \\ 3 & 2 \end{bmatrix}$

Column space has dimension 2 (2 vectors in the basis)

Row space has what dimension ??

Dimension of row space = Dimension of column space

Proof by factoring A = CR to see row rank = column rank

$$\begin{bmatrix} 6 & 2 & 4 \\ 4 & 2 & 2 \\ 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 4 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 - 1 \end{bmatrix}$$

$$A \qquad C \qquad R$$

Columns of A = combination of columns of C Column basis in C

Rows of $A = \text{combination of rows of } R = \mathbf{Row \ basis \ in \ } R$

$$\mathsf{RANK} \text{ of } A \qquad r=2=2$$

A = CMR has become an important factorization

Mixing matrix M = invertible r by r — C and R come from A

Four great factorizations

1. Symmetric $S = Q \Lambda Q^{\mathrm{T}}$

Every $A = U \Sigma V^{\mathrm{T}}$

2.

eigenvectors in $oldsymbol{Q}$ eigenvalues in $oldsymbol{\Lambda}$

- left singular vectors in $oldsymbol{U}$ singular values in $oldsymbol{\Sigma}$ right singular vectors in $oldsymbol{V}$
- 3. Orthogonalize columns A = QR Orthogonal QTriangular R
- 4. Elimination A = LUNo row exchanges

Lower triangular LUpper triangular U Q has n orthonormal columns (length 1)

$$Q^{\mathrm{T}}Q = \begin{bmatrix} & \boldsymbol{q}_{1}^{\mathrm{T}} \\ & \vdots \\ & \boldsymbol{q}_{n}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \boldsymbol{q}_{1} \cdot \cdot \boldsymbol{q}_{n} \end{bmatrix} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix} = I$$

If Q is square then $Q^{T} = Q^{-1}$ "orthogonal matrix" $(QQ^{T} = I)$ If Q is rectangular then QQ^{T} is a projection P $(QQ^{T} \neq I)$ $P^{2} = QQ^{T}QQ^{T} = QQ^{T} = P$

Orthogonal matrices (square) are great for computation

$$||Q \boldsymbol{x}|| = || \boldsymbol{x} ||$$
 $Q_1 Q_2$ is also orthogonal

Symmetric $S = Q\Lambda Q^{\mathrm{T}} = \lambda_1 q_1 q_1^{\mathrm{T}} + \dots + \lambda_n q_n q_n^{\mathrm{T}}$

 $\begin{array}{ll} \textbf{Positive definite if all } \lambda_i > 0 \\ \textbf{Positive semidefinite if all } \lambda_i \geq 0 \\ \textbf{Positive definite energy } \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x} > 0 & \text{all } \boldsymbol{x} \neq \boldsymbol{0} \\ \textbf{Positive semidefinite energy } \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x} \geq 0 & \text{all } \boldsymbol{x} \\ \textbf{Positive definite factorization } S = A^{\mathrm{T}} A & \text{full rank } A \\ \textbf{Positive semidefinite factorization } S = A^{\mathrm{T}} A & \text{any rank } A \end{array}$

Key
$$\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x} = \boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} A \boldsymbol{x} = (A \boldsymbol{x})^{\mathrm{T}} (A \boldsymbol{x}) \geq 0$$

 $A = U\Sigma V^{\mathrm{T}} = (\text{orthogonal})(\text{diagonal})(\text{orthogonal}) = \mathbf{SVD}$

$$A^{\mathrm{T}}A = (V\Sigma^{\mathrm{T}}U^{\mathrm{T}})(U\Sigma V^{\mathrm{T}}) = V(\Sigma^{\mathrm{T}}\Sigma)V^{\mathrm{T}}$$

 \boldsymbol{v} 's are eigenvectors of $A^{\mathrm{T}}A$: orthonormal!

$$\sigma^2$$
 are eigenvalues of $A^{\mathrm{T}}A$: $\sigma^2 = \lambda \ge 0$!

 $oldsymbol{u}$'s are eigenvectors of AA^{T} : orthonormal !

$$\boldsymbol{u}_i = rac{A \boldsymbol{v}_i}{\sigma_i}$$
 leads to $\boldsymbol{u}_i^{\mathrm{T}} \boldsymbol{u}_j = rac{\boldsymbol{v}_i^{\mathrm{T}} A^{\mathrm{T}} A \boldsymbol{v}_j}{\sigma_i \sigma_j} = \boldsymbol{v}_i^{\mathrm{T}} \boldsymbol{v}_j rac{\sigma_j}{\sigma_i} = egin{array}{c} 1 & i = j \\ 0 & i \neq j \end{array}$

9/17

 $A = U\Sigma V^{\mathrm{T}} = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathrm{T}} + \dots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^{\mathrm{T}} \quad (\text{ decreasing } \sigma_i)$

$$A = \begin{bmatrix} \mathbf{3} & \mathbf{0} \\ \mathbf{4} & \mathbf{5} \end{bmatrix} = \frac{3}{2} \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{3} & \mathbf{3} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mathbf{3} & -\mathbf{3} \\ -\mathbf{1} & \mathbf{1} \end{bmatrix}$$

PCA = Principal Component Analysis uses the SVD

$$\sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathrm{T}} = \frac{3}{2} \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix} = \text{rank 1 matrix closest to } A$$

 $A_k = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathrm{T}} + \dots + \sigma_k \boldsymbol{u}_k \boldsymbol{v}_k^{\mathrm{T}} = \text{ rank } k \text{ matrix closest to } A$

$$A_k$$
 minimizes $||A - any rank k matrix ||$

 ℓ^2 norm $||A|| = \max ||A oldsymbol{x}|| / ||oldsymbol{x}|| = \sigma_1 = ||$ argest σ

Frobenius norm $||A||_F^2 =$ sum of all $|a_{ij}|^2 =$ sum of all σ_i^2

A = QR = (orthogonal)(triangular) Gram-Schmidt

 $oldsymbol{a}_1 = oldsymbol{q}_1 r_{11}$ First columns of A and Q: $r_{11} = ||oldsymbol{a}_1||$

 $m{a}_2 = m{q}_1 r_{12} + m{q}_2 r_{22}$ Second columns: $r_{12} = m{q}_1^{\mathrm{T}} m{a}_2$ and $r_{22} = ||m{a}_2 - m{q}_1 r_{12}||$

Every $r_{ij} = \boldsymbol{q}_i^{\mathrm{T}} \boldsymbol{a}_j$ Subtract each $\boldsymbol{q}_i \, r_{ij} \; (i < j)$ from later columns \boldsymbol{a}_j

Version 1 : Subtract when you reach a_j in step j

Version 2 : Subtract as soon as you know $oldsymbol{q}_i$ in step i

#2 allows column permutations: choose largest column in next step i + 1

Then columns are permuted and AP = QR is numerically stable

A = LU = (lower triangular with $\ell_{ii} = 1)($ upper triangular)

First row of U $u_1^* = a_1^* =$ first row of A

First column of L $\ell_1 = (\text{first column of } A)/a_{11}$

Remove
$$\ell_1 u_1^*$$
 to leave $A - \ell_1 u_1^* = \begin{bmatrix} 0 & \mathbf{0}^* \\ \mathbf{0} & A_1 \end{bmatrix}$ A_1 has size $n-1$

Remove
$$oldsymbol{\ell}_koldsymbol{u}_k^*$$
 to find $A-\sum_1^koldsymbol{\ell}_ioldsymbol{u}_i^*=\left[egin{array}{cc} 0&0\\ 0&oldsymbol{A_k}\end{array}
ight]\quad A_k$ has size $n-k$

Note that $\boldsymbol{\ell_k}$ and \boldsymbol{u}_k^* start with k-1 zeros : L and U are triangular

Finally
$$A = \sum_{1}^{n} \ell_{i} \, \boldsymbol{u}_{i}^{*} = LU = (\mathsf{lower triangular}) \, (\mathsf{upper triangular})$$

Ordering each of the factorizations

$$oldsymbol{S} = oldsymbol{Q} oldsymbol{\Lambda} oldsymbol{Q}^{\mathbf{T}}$$
 with $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$

 $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathbf{T}}$ with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$

AP = QR with $r_{11} \ge r_{22} \ge \ldots =$ "column pivoting"

PA = LU with all $|\ell_{ij}| \le 1 =$ "partial pivoting"

Those permutations P give numerical stability against roundo

Derivatives when
$$S = S(t)$$
 and $A = A(t)$
$$\frac{d\lambda_k(S)}{dt} = q_k \frac{dS}{dt} q_k^{\mathrm{T}}$$
$$\frac{d\sigma_k(A)}{dt} = u_k \frac{dA}{dt} v_k^{\mathrm{T}}$$

Four Fundamental Subspaces for A

Four Fundamental Subspaces : Their dimensions add to n and m

Pseudoinverse of $A = U\Sigma V^{\mathrm{T}}$ is $A^{+} = V\Sigma^{+}U^{\mathrm{T}}$

 $\begin{array}{lll} \textbf{Pseudoinverse} \quad \boldsymbol{\Sigma} &= {\rm diag}\left(\sigma_1,\ldots,\sigma_r,0,\ldots,0\right) & \text{ is } m \text{ by } n \\ \\ \boldsymbol{\Sigma}^+ &= {\rm diag}\left(1/\sigma_1,\ldots,1/\sigma_r,0,\ldots,0\right) & \text{ is } n \text{ by } m \end{array}$

From row space to column space any A is invertible

From column space to row space A^+ is that inverse

 $A^+A =$ projection onto row space $AA^+ =$ projection onto column space

 A^+b is the minimum norm least squares solution of Ax = bThat is because A^+b has zero component in the nullspace of A A^+b minimizes $||Ax - b||^2 + \lambda ||x||^2$ as λ drops to zero

Minimization in ℓ^1 ℓ^2 ℓ^∞

Minimize $||\boldsymbol{v}||$ among vectors (v_1, v_2) on the line $3v_1 + 4v_2 = 1$ $ig(0,rac{1}{4}ig)$ has $||v^*||_1 = rac{1}{4}$ $ig(rac{3}{25},rac{4}{25}ig)$ has $||v^*||_2 = rac{1}{5}$ $ig(rac{1}{7},rac{1}{7}ig)$ has $||v^*||_\infty = rac{1}{7}$ ℓ^1 diamond ℓ^2 circle ℓ^{∞} square

Basis pursuitMinimize $|x_1| + \cdots + |x_n|$ subject to Ax = bLASSO with noiseMinimize $||Ax - b||^2 + \lambda \Sigma |x_i|$ LASSO with penaltyMinimize $||Ax - b||^2$ with $\Sigma |x_i| \le L$ Good ADMM algorithms alternate ℓ^2 problem and ℓ^1 problem

 $A \text{ is } \mathbf{2} \times \boldsymbol{n}$ (large nullspace) $AA^{\mathrm{T}} \text{ is } \mathbf{2} \times \mathbf{2}$ (small matrix) $A^{\mathrm{T}}A \text{ is } \boldsymbol{n} \times \boldsymbol{n}$ (large matrix)

Two singular values $\sigma_1 > \sigma_2 > 0$

The sample covariance matrix is defined by $S = \frac{AA^{\mathrm{T}}}{n-1}$.

The sum of squared distances from the data points to the u_1 line is a minimum.

Total variance $T = (\sigma_1^2 + \dots + \sigma_r^2)/(n-1).$

MIT OpenCourseWare https://ocw.mit.edu

18.085 Computational Science and Engineering I Summer 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.