# Key Ideas in Linear Algebra 

# Gilbert Strang 

MIT
2019
$1 / 17$

## Multiply $A \boldsymbol{x}$ by columns, not rows

$$
A \boldsymbol{x}=\left[\begin{array}{ccc}
\mid & & \mid \\
\boldsymbol{a}_{1} & \cdots & \boldsymbol{a}_{n} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\boldsymbol{a}_{1}\right] x_{1}+\cdots+\left[\boldsymbol{a}_{n}\right] x_{n}
$$

Ax is a combination of the columns $\boldsymbol{a}_{1}$ to $\boldsymbol{a}_{n}$
Column space $\mathbf{C}(A)=$ all combinations of the columns
$A \boldsymbol{x}=\boldsymbol{b}$ has at least one solution $\boldsymbol{x}$ when $\boldsymbol{b}$ is in $\mathbf{C}(A)$

## Matrix multiplication: Columns times rows

$$
A B=\left[\boldsymbol{a}_{1} \ldots \boldsymbol{a}_{n}\right]\left[\begin{array}{c}
\boldsymbol{b}_{1}^{*} \\
\vdots \\
\boldsymbol{b}_{n}^{*}
\end{array}\right]=\boldsymbol{a}_{1} \boldsymbol{b}_{1}^{*}+\cdots+\boldsymbol{a}_{n} \boldsymbol{b}_{n}^{*}
$$

Sum of rank-one matrices $\boldsymbol{a}_{i} \boldsymbol{b}_{i}^{*}=$ column times row

$$
\text { Example }\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right]\left[\begin{array}{ll}
2 & 1-1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1-1 \\
8 & 4-4 \\
6 & 3-3
\end{array}\right]
$$

Column space $=$ all multiples of $\left[\begin{array}{l}1 \\ 4 \\ 3\end{array}\right]$ Row space $=$ all multiples of $\left[\begin{array}{r}2 \\ 1 \\ -1\end{array}\right]$
Dimension of column space $=1=$ Dimension of row space: Rank $=1$

## Basis for the column space - by example

$$
A=\left[\begin{array}{lll}
6 & 2 & 4 \\
4 & 2 & 2 \\
3 & 2 & 1
\end{array}\right]
$$

Column 1 is not zero - it goes in the basis
Column 2 is not a multiple of column 1 - put into the basis
Column 3 is (Column 1) - (Column 2) : Dependent column
Column basis matrix $C=\left[\begin{array}{ll}6 & 2 \\ 4 & 2 \\ 3 & 2\end{array}\right]$
Column space has dimension 2 ( 2 vectors in the basis)
Row space has what dimension ??

Dimension of row space $=$ Dimension of column space

Proof by factoring $A=C R$ to see row rank $=$ column rank

$$
\begin{array}{ccc}
{\left[\begin{array}{lll}
6 & 2 & 4 \\
4 & 2 & 2 \\
3 & 2 & 1
\end{array}\right]}
\end{array}=\frac{\left[\begin{array}{ll}
6 & 2 \\
4 & 2 \\
3 & 2
\end{array}\right]}{A} \begin{array}{rrr}
{\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right]}
\end{array}
$$

Columns of $A=$ combination of columns of $C$ Column basis in $C$ Rows of $A=$ combination of rows of $R=$ Row basis in $R$

$$
\text { RANK of } A \quad r=2=2
$$

$\boldsymbol{A}=\boldsymbol{C M R}$ has become an important factorization
Mixing matrix $M=$ invertible $r$ by $r \quad \boldsymbol{C}$ and $\boldsymbol{R}$ come from $\boldsymbol{A}$

## Four great factorizations

1. Symmetric $S=Q \Lambda Q^{\mathrm{T}}$
2. Every $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathbf{T}}$
3. Orthogonalize columns $\boldsymbol{A}=\boldsymbol{Q R}$ Orthogonal $\boldsymbol{Q}$
4. Elimination $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$

No row exchanges

Triangular $\boldsymbol{R}$
eigenvectors in $\boldsymbol{Q}$
eigenvalues in $\boldsymbol{\Lambda}$
left singular vectors in $\boldsymbol{U}$ singular values in $\boldsymbol{\Sigma}$
right singular vectors in $\boldsymbol{V}$

Lower triangular $L$
Upper triangular $\boldsymbol{U}$
$Q$ has $n$ orthonormal columns (length 1 )

$$
Q^{\mathrm{T}} Q=\left[\begin{array}{c}
\boldsymbol{q}_{1}^{\mathrm{T}} \\
\vdots \\
\boldsymbol{q}_{n}^{\mathrm{T}}
\end{array}\right]\left[\boldsymbol{q}_{1} \cdots \boldsymbol{q}_{n}\right]=\left[\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right]=I
$$

If $Q$ is square then $\boldsymbol{Q}^{\mathbf{T}}=\boldsymbol{Q}^{\mathbf{- 1}}$ "orthogonal matrix" $\left(Q Q^{\mathrm{T}}=I\right)$
If $Q$ is rectangular then $Q Q^{\mathrm{T}}$ is a projection $P$
$\left(Q Q^{\mathrm{T}} \neq I\right)$

$$
P^{2}=Q Q^{\mathrm{T}} Q Q^{\mathrm{T}}=Q Q^{\mathrm{T}}=P
$$

Orthogonal matrices (square) are great for computation

$$
\|Q \boldsymbol{x}\|=\|\boldsymbol{x}\| \quad Q_{1} Q_{2} \text { is also orthogonal }
$$

## Symmetric

$$
\boldsymbol{S}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\mathbf{T}}=\lambda_{1} \boldsymbol{q}_{1} \boldsymbol{q}_{1}^{\mathrm{T}}+\cdots+\lambda_{n} \boldsymbol{q}_{n} \boldsymbol{q}_{n}^{\mathrm{T}}
$$

Positive definite if all $\lambda_{i}>0$
Positive semidefinite if all $\lambda_{i} \geq 0$
Positive definite energy $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}>0$
all $\boldsymbol{x} \neq \mathbf{0}$
Positive semidefinite energy $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x} \geq 0$
all $\boldsymbol{x}$
Positive definite factorization $S=A^{\mathrm{T}} A \quad$ full rank $A$
Positive semidefinite factorization $S=A^{\mathrm{T}} A \quad$ any rank $A$

$$
\text { Key } \quad \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}=\boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} A \boldsymbol{x}=(A \boldsymbol{x})^{\mathrm{T}}(A \boldsymbol{x}) \geq 0
$$

## $A=U \Sigma V^{\mathrm{T}}=($ orthogonal $)($ diagonal $)($ orthogonal $)=\mathbf{S V D}$

$$
A V=A\left[\begin{array}{lll}
\boldsymbol{v}_{1} & \cdots & \boldsymbol{v}_{n} \\
& &
\end{array}\right]=U \Sigma=\left[\begin{array}{lll} 
& & \\
\boldsymbol{u}_{1} & \cdots & \boldsymbol{u}_{m} \\
& &
\end{array}\right]\left[\begin{array}{cccc}
\sigma_{1} & & & \\
& \ddots & & \\
& & \sigma_{r} & \\
& & & 0
\end{array}\right]
$$

$$
A \boldsymbol{v}_{1}=\sigma_{1} \boldsymbol{u}_{1} \cdots A \boldsymbol{v}_{r}=\sigma_{r} \boldsymbol{u}_{r} \quad A \text { has rank } r
$$

$$
A^{\mathrm{T}} A=\left(V \Sigma^{\mathrm{T}} U^{\mathrm{T}}\right)\left(U \Sigma V^{\mathrm{T}}\right)=V\left(\Sigma^{\mathrm{T}} \Sigma\right) V^{\mathrm{T}}
$$

$\boldsymbol{v}$ 's are eigenvectors of $A^{\mathrm{T}} A$ : orthonormal!
$\sigma^{2}$ are eigenvalues of $A^{\mathrm{T}} A: \sigma^{2}=\lambda \geq 0$ !
$\boldsymbol{u}$ 's are eigenvectors of $A A^{\mathrm{T}}$ : orthonormal!

$$
\boldsymbol{u}_{i}=\frac{A \boldsymbol{v}_{i}}{\sigma_{i}} \text { leads to } \boldsymbol{u}_{i}^{\mathrm{T}} \boldsymbol{u}_{j}=\frac{\boldsymbol{v}_{i}^{\mathrm{T}} A^{\mathrm{T}} A \boldsymbol{v}_{j}}{\sigma_{i} \sigma_{j}}=\boldsymbol{v}_{i}^{\mathrm{T}} \boldsymbol{v}_{j} \frac{\sigma_{j}}{\sigma_{i}}=\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array}
$$

$$
\begin{gathered}
A=U \Sigma V^{\mathrm{T}}=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+\cdots+\sigma_{r} \boldsymbol{u}_{\boldsymbol{r}} \boldsymbol{v}_{r}^{\mathrm{T}} \quad\left(\text { decreasing } \sigma_{i}\right) \\
A=\left[\begin{array}{ll}
\mathbf{3} & \mathbf{0} \\
\mathbf{4} & \mathbf{5}
\end{array}\right]=\frac{3}{2}\left[\begin{array}{ll}
\mathbf{1} & \mathbf{1} \\
\mathbf{3} & \mathbf{3}
\end{array}\right]+\frac{1}{2}\left[\begin{array}{rr}
\mathbf{3} & \mathbf{3} \\
-\mathbf{1} & \mathbf{1}
\end{array}\right]
\end{gathered}
$$

PCA $=$ Principal Component Analysis uses the SVD

$$
\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}=\frac{3}{2}\left[\begin{array}{ll}
1 & 3 \\
1 & 3
\end{array}\right]=\text { rank } 1 \text { matrix closest to } A
$$

$A_{k}=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+\cdots+\sigma_{k} \boldsymbol{u}_{k} \boldsymbol{v}_{k}^{\mathrm{T}}=$ rank $k$ matrix closest to $A$
$A_{k}$ minimizes $\| A$ - any rank $k$ matrix $\|$

$$
\ell^{2} \text { norm }\|A\|=\max \|A x\| /\|x\|=\sigma_{1}=\text { largest } \sigma
$$

Frobenius norm $\|A\|_{F}^{2}=$ sum of all $\left|a_{i j}\right|^{2}=$ sum of all $\sigma_{i}^{2}$

## $A=Q R=$ (orthogonal)(triangular) Gram-Schmidt

$\boldsymbol{a}_{1}=\boldsymbol{q}_{1} r_{11} \quad$ First columns of $A$ and $Q: r_{11}=\left\|\boldsymbol{a}_{1}\right\|$
$\boldsymbol{a}_{2}=\boldsymbol{q}_{1} r_{12}+\boldsymbol{q}_{2} r_{22}$ Second columns : $r_{12}=\boldsymbol{q}_{1}^{\mathrm{T}} \boldsymbol{a}_{2}$ and $r_{22}=\left\|\boldsymbol{a}_{2}-\boldsymbol{q}_{1} r_{12}\right\|$
Every $r_{i j}=\boldsymbol{q}_{i}^{\mathrm{T}} \boldsymbol{a}_{j} \quad$ Subtract each $\boldsymbol{q}_{i} r_{i j}(i<j)$ from later columns $\boldsymbol{a}_{j}$
Version 1: Subtract when you reach $\boldsymbol{a}_{j}$ in step $j$
Version 2 : Subtract as soon as you know $\boldsymbol{q}_{i}$ in step $i$
\#2 allows column permutations: choose largest column in next step $i+1$
Then columns are permuted and $A P=Q R$ is numerically stable

## $A=L U=\left(\right.$ lower triangular with $\left.\ell_{i i}=1\right)$ (upper triangular)

First row of $U \quad \boldsymbol{u}_{1}^{*}=\boldsymbol{a}_{1}^{*}=$ first row of $A$
First column of $L \quad \ell_{1}=($ first column of $A) / a_{11}$
Remove $\boldsymbol{\ell}_{1} \boldsymbol{u}_{1}^{*}$ to leave $A-\boldsymbol{\ell}_{1} \boldsymbol{u}_{1}^{*}=\left[\begin{array}{cc}0 & \mathbf{0}^{*} \\ \mathbf{0} & \boldsymbol{A}_{\mathbf{1}}\end{array}\right] \quad A_{1}$ has size $n-1$
Remove $\boldsymbol{\ell}_{k} \boldsymbol{u}_{k}^{*}$ to find $A-\sum_{1}^{k} \boldsymbol{\ell}_{i} \boldsymbol{u}_{i}^{*}=\left[\begin{array}{cc}0 & 0 \\ 0 & \boldsymbol{A}_{\boldsymbol{k}}\end{array}\right] \quad A_{k}$ has size $n-k$
Note that $\boldsymbol{\ell}_{\boldsymbol{k}}$ and $\boldsymbol{u}_{k}^{*}$ start with $k-1$ zeros: $L$ and $U$ are triangular
Finally $A=\sum_{1}^{n} \boldsymbol{\ell}_{i} \boldsymbol{u}_{i}^{*}=L U=$ (lower triangular) (upper triangular)

## Ordering each of the factorizations

$\boldsymbol{S}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\mathbf{T}}$ with $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$
$\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathbf{T}}$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$
$\boldsymbol{A P}=\boldsymbol{Q} \boldsymbol{R}$ with $r_{11} \geq r_{22} \geq \ldots=$ "column pivoting"
$\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ with all $\left|\ell_{i j}\right| \leq 1=$ "partial pivoting"
Those permutations $P$ give numerical stability against roundo

Derivatives when $S=S(t)$ and $A=A(t)$

$$
\begin{aligned}
\frac{d \lambda_{k}(S)}{d t} & =\boldsymbol{q}_{k} \frac{d S}{d t} \boldsymbol{q}_{k}^{\mathrm{T}} \\
\frac{d \sigma_{k}(A)}{d t} & =\boldsymbol{u}_{k} \frac{d A}{d t} \boldsymbol{v}_{k}^{\mathrm{T}}
\end{aligned}
$$

## Four Fundamental Subspaces for $A$



Four Fundamental Subspaces: Their dimensions add to $n$ and $m$

Pseudoinverse of $A=U \Sigma V^{\mathrm{T}}$ is $A^{+}=V \Sigma^{+} U^{\mathrm{T}}$

$$
\begin{array}{lll}
\text { Pseudoinverse } & \boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right) & \text { is } m \text { by } n \\
& \boldsymbol{\Sigma}^{+}=\operatorname{diag}\left(1 / \sigma_{1}, \ldots, 1 / \sigma_{r}, 0, \ldots, 0\right) & \text { is } n \text { by } m
\end{array}
$$

From row space to column space any $A$ is invertible
From column space to row space $A^{+}$is that inverse

$$
\begin{aligned}
& A^{+} A=\text { projection onto row space } \\
& A A^{+}=\text {projection onto column space }
\end{aligned}
$$

$A^{+} \boldsymbol{b}$ is the minimum norm least squares solution of $A \boldsymbol{x}=\boldsymbol{b}$
That is because $A^{+} \boldsymbol{b}$ has zero component in the nullspace of $A$
$A^{+} \boldsymbol{b}$ minimizes $\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}+\lambda\|\boldsymbol{x}\|^{2}$ as $\lambda$ drops to zero

## Minimization in $\ell^{1} \ell^{2} \quad \ell^{\infty}$

Minimize $\|\boldsymbol{v}\|$ among vectors $\left(v_{1}, v_{2}\right)$ on the line $3 v_{1}+4 v_{2}=1$

$\ell^{1}$ diamond

$\ell^{2}$ circle
$\left(\frac{1}{7}, \frac{1}{7}\right)$ has $\left\|v^{*}\right\|_{\infty}=\frac{1}{7}$

$\ell^{\infty}$ square

Basis pursuit
LASSO with noise
LASSO with penalty

Minimize $\left|x_{1}\right|+\cdots+\left|x_{n}\right|$ subject to $A \boldsymbol{x}=\boldsymbol{b}$
Minimize $\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}+\lambda \Sigma\left|x_{i}\right|$
Minimize $\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}$ with $\Sigma\left|x_{i}\right| \leq L$

Good ADMM algorithms alternate $\ell^{2}$ problem and $\ell^{1}$ problem

$A$ is $\mathbf{2} \times \boldsymbol{n}$ (large nullspace)
$A A^{\mathrm{T}}$ is $\mathbf{2} \times \mathbf{2}$ (small matrix)
$A^{\mathrm{T}} A$ is $\boldsymbol{n} \times \boldsymbol{n}$ (large matrix)
Two singular values $\sigma_{1}>\sigma_{2}>\mathbf{0}$

The sample covariance matrix is defined by $S=\frac{A A^{\mathrm{T}}}{n-1}$.
The sum of squared distances from the data points to the $u_{1}$ line is a minimum.

Total variance $\quad T=\left(\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}\right) /(n-1)$.

## MIT OpenCourseWare <br> https://ocw.mit.edu

18.085 Computational Science and Engineering I Summer 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

