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Partial Differential Equations


3.7 Four Model Examples 

The differential equations in Chapter 1 were very  ordinary.  There were time deriva-
tives d/dt or space derivatives d/dx but not both: 

du d2u	 d du 
= −Ku or M + Ku = F (t) or  − c(x) = f (x) . (1)

dt dt2	 dx dx 

A partial differential equation contains two or more derivatives (they have to be partial 
derivatives like ∂/∂x and ∂/∂y and ∂/∂t so we can tell them apart). The solution 
u(x, y) or  u(x, t) or  even  u(x, y, t) is a function of those “independent variables” x 
and y and t. 

It is important to distinguish different types of equations, above all the distinction 
between “boundary value problems” and initial value problems”. The time variable t 
indicates an initial value problem. The first equation in (1) starts from an initial value 
u(0). The solution u(ε) evolves??  for  t >  0 by obeying the equation du/dt = Au. 
The second equation needs also an initial value du/dt(0) for the velocity, because 
the leading term involves d2u/dt2 . Boundary values were given at endpoints x = 0  
and x = 1. Inside the boundary (in the interior) u(x) solved the equation, with just 
enough freedom (two arbitrary constants) to satisfy the two boundary conditions. All 
good.  The  third equation in (1)  described  a  steady state u(x). 

For partial differential equations, start with initial value problems. We will focus 
on three examples. They involve first or second order derivatives in t and in x and 
u(x, t) is a scalar. The names of the equations are important too: 

∂u ∂uOne way wave equation	 ∂t = ∂x (2) 

∂u ∂2uHeat equation, diffusion equation	 = 
∂t ∂x2 (3) 

∂2uWave equation (with velocity c) ∂t2 = c 2 ∂
2u (4)∂x2 

The first two equations involve ∂/∂t (first order) so initial values u(x, 0) will 
be given (at t = 0). We know where the solution starts, and in Figure 3.1 those  
initial values are delta functions. Notice the difference at t = 1!  In  the  one  way  
wave equation, the delta function moved to the left. In the heat equation, the delta 
function diffused into a Gaussian. And it spreads out even further by the time t = 2.  
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Since the initial value is symmetric around the centerpoint x = 0,  so  is  the  solution  
u(x, t). The heat equation doesn’t notice if you change x to −x, but it sure notices if 
you switch t to −t. The “backward heat equation” −∂u/∂t = ∂2u/∂x2 is impossible 
to solve. Physically, hot air can spread into a room, but time doesn’t reverse and the 
diffused heat doesn’t return back to the starting point. 

The full  wave equation involves  ∂2u/∂t2, so we need an initial velocity ∂u/∂t(x, 0) 
in addition to u(x, 0). In Figure 3.2a that initial velocity is zero. We see waves going in 
both directions (symmetrically). In Figure 3.2b the initial velocity is ∂u/∂t(x, 0) = 1. 
The wave to the left is different from the wave to the right. You might note that the 
same word “velocity” was used for the number c (velocity in x − t space) and for 
∂u/∂t (velocity in u − t space). 

How could those examples be extended? The one way wave equation could become 

∂u ∂u ∂u ∂u ∂u ∂u 
??? = c or = c(x) or even = c(u) . (5)

∂t ∂x ∂t ∂x ∂t ∂x 

The last of those is nonlinear! It is highly important, one good application is to traffic 
flow. At a point x on the highway, the car density is u(x, t) at  time  t. If the density 
up ahead (one way drivers!) is greater, then cars slow down and get denser. The 
relation depends on u itself, it is not linear. This produces the waves of stop and go 
driving that a helicopter sees in a traffic jam. 

The heat equation should have a “diffusivity constant” c, with the dimension of 
(distance)2/time. In fact this fits our framework exactly, there is a perfect analogy 
with K = ATCA and u = −Ku: 

∂u ∂ ∂u 
= c(x) . (6)

∂t ∂x ∂x 

When c(x) is a positive constant, we can rescale time to make c = 1. That is the case 
we can solve. (When c is a negative constant, nobody can solve the backward heat 
equation. We never allowed c <  0 in Chapters 1 and 2 either.) When c depends on 
u or ∂u/∂x, the equation becomes nonlinear and we don’t expect an exact formula 
(but we can compute!). 

??? The wave equation would also look better in its symmetric form using ATCA. 
Notice also that it can be rewritten as [ ] [ ] [ ] 

∂u ∂u∂ 
∂t 0 c ∂ 

= ∂t 
∂t c ∂u c 0 ∂x c ∂u . (7) 

∂x ∂x 

In a sense (Problem A) this is a pair of one way wave equations! 

Those time-dependent wave and heat equations will come after we study the 
all-important equation of equilibrium: Laplace’s equation. This describes a steady 
state. The variables are x, y, z (in three space dimensions) or x and y (in two dimensions— 
we will concentrate on this very remarkable model). 
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Laplace’s equation has pure second derivatives ∂2u/∂x2 = uxx and ∂2u/∂y2 = uyy : 

∂2u d2u 
Laplace: + 

∂y2 
= uxx + uyy = 0 in a plane region R (8)

∂x2 

This describes the steady state temperature u(x, y) over the region R, when there is 
no heat source inside (the right side of the equation is zero). The problem doesn’t 
have initial conditions, it has boundary conditions! The boundary of R is a closed 
curve C.  At every  point of  C we may prescribe either a fixed temperature u0 or a 
heat flux F0: 

∂u 
Boundary conditions: u = u0 or = F0 at each point of C .  (9)

∂n 
∂uThat “normal derivative” ∂n is the rate of change of u in the direction perpendicular 

to the boundary. At a point where the boundary is insulated (meaning that no heat 
can flow through) the flux is ∂u/∂n = 0.  

This is the problem of Section 3.2: Laplace’s equation (8) with boundary condi-
tions (9). It is the two-dimensional analogue, a partial differential equation, of the 
most basic two-point value problem: 

d2u 
= 0  with  [u(0) or u ′(0)] and [u(1) or u ′(1)] given at the endpoints . (10)

dx2 

This describes the displacement (or it could be the temperature) in a rod. The 
solution to equation (10) is just u(x) =  A + Bx. For Laplace’s equation we will list 
an infinite family of solutions (which we need because there are infinitely many more 
boundary points!). 

Equation (10) was our simple model, with no applied force f and with a constant  
coefficient c = 1. The more general form in Chapter 2 was 

d du du − c(x) = f(x), with boundary conditions on u or w = c . (11)
dx dx dx 

Those possibilities for f and c are also seen in two dimensions. When there is a source 
term f(x, y) we  have  Poisson’s equation (pronounced Pwa-son): 

∂2u ∂2u 
Poisson: + 

∂y2 
= uxx + uyy = f(x, y) in the region R .  (12)

∂x2 

When the material in R is not homogeneous, the constant coefficient c = 1 becomes 
a variable coefficient c(x, y): 

∂ ∂u ∂ ∂u 
Nonhomogeneous: c + c = f(x, y) in the region R (13)

∂x ∂x ∂y ∂y 

Maybe you can see that we are closing in on our favorite framework ATCAu = f ! 

Section 3.2 sets this framework,  by identifying  A and AT . Those are the key 
operators of vector calculus, the gradient and the divergence. Laplace’s equation, 
with c = 1  and  f = 0, is seen as div grad u = 0. Then we concentrate on solving this 
exceptional equation, by analysis or by scientific computing: 
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Exact solution (formula and series): Section 3.2 
Numerical solution (finite differences and finite elements): Section 3.3. 




