Lecture Notes: Chapter 11 Sarkovskii's Theorem

Jeremy Hurwitz - 18.091 - April 6, 2005

April 13, 2005

1 Period 3 Implies Chaos

Theorem 1 (The Period 3 Theorem). Suppose $F : \Re \to \Re$ is continuous. Suppose also that F has a periodic point of prime period 3. Then F also has periodic points of all other periods.

Useful Observations The following statements will be helpful in proving Theorem 1. Pictorial demonstrations of both are in the textbook on page 135, figures 11.1 and 11.2.

Observation 1. Suppose I = [a, b] and J = [c, d] are closed intervals and $I \subset J$. If $F(I) \supset J$, then F has a fixed point in I.

This follows immediately from the intermediate value theorem. Since $I \subset J$, the graph of F must cross the diagonal. The fixed point, of course, does not need to be unique.

Observation 2. Suppose I and J are two closed intervals and $F(I) \supset J$. Then there is a closed subinterval $I' \subset I$ such that F(I') = J.

Note that we do not assume that $I \subset J$ in this case.

Proof

Suppose that the 3-cycle of F is given by

$$a \mapsto b \mapsto c \mapsto a \mapsto \dots \tag{1}$$

Assume that a is the leftmost point on the orbit. There are two possibilities then for the relative positions of b and c. We will assume that a < b < c. The other case is proven similarly.

Let $I_0 = [a, b]$ and $I_1 = [b, c]$. Since F(a) = b, F(b) = c, and F is continuous, by the Intermediate Value Theorem

$$F(I_0) \supset I_0. \tag{2}$$

Similarly, since F(b) = c and F(c) = a,

$$F(I_1) \supset I_0 \cup I_1. \tag{3}$$

We will next construct cycles of length 1 and 2. Then we will construct all cycles of length n > 3.

N=1 Since $F(I_1) \supset I_1$ (by (3)), there is a fixed point in I_1 (Observation 1).

N=2 Since $F(I_0) \supset I_1$ (by (2)) and $F(I_1) \supset I_0$ (by (3)), $F^2(I_0) \supset I_0$. So there is a fixed point of F^2 in I_0 (Observation 1). So F has a 2-cycle.

Cycles of Length Greater Than 3

To find a periodic point with period n, we will invoke Observation 2 a total of n times.

Since $F(I_1) \supset I_1$, there is a closed subinterval $A_1 \subset I_1$ such that $F(A_1) = I_1$.

Again invoking Observation 2, since $F(A_1) \supset A_1$, we can find a closed subinterval $A_2 \subset A_1$ such that $F(A_2) = A_1$. Note that by construction, $A_2 \subset A_1 \subset I_1$.

Repeat this process n-2 times. We this end up with a collection of closed subintervals

 $A_{n-2} \subset A_{n-3} \subset \ldots \subset A_2 \subset A_1 \subset I_1 \tag{4}$

Note that $F^{n-2}(A_{n-2}) = I_1$ and $A_{n-2} \subset I_1$.

Since $F(I_0) \supset I_1 \supset A_{n-2}$, there is a closed subinterval $A_{n-1} \subset I_0$ such that $F(A_{n-1}) = A_{n-2}$.

Lastly, since $F(I_1) \supset I_0 \supset A_{n-1}$, there is a closed subinterval $A_n \subset I_1$ such that $F(A_n) = A_{n-1}$. We have now constructed a series of closed intervals such that

$$A_n \mapsto A_{n-1} \mapsto A_{n-2} \dots \mapsto A_2 \mapsto A_1 \mapsto I_1. \tag{5}$$

Since $F^n(A_n) = I_1$ and $A_n \subset I_1$, we may invoke Observation 1 to conclude that there is a point, x_0 fixed by F^n .

We must now show that the orbit of x_0 has prime period n. Note that $x_0 \notin I_0 \cap I_1$, since $I_0 \cap I_1 = \{b\}$ and $F(b) = c \notin I_0$, whereas $F(x_0) \in F(A_n \subset I_0)$.

 $F(x_0) \in I_0$, but all other iterations lie in I_1 . So x_0 cannot have period less than n. This completes the proof.

2 Sarkovskii's Theorem

2.1 The Sarkovskii Ordering of the Natural Numbers

The following ordering, read from left-to-right, then top-to-bottom, is known as Sarkovskii's Ordering of the Natural Numbers.

$$\begin{array}{l} 3,5,7,9,\ldots \\ 2\cdot 3,2\cdot 5,2\cdot 7,\ldots \\ 2^2\cdot 3,2^2\cdot 5,2^2\cdot 7,\ldots \\ 2^3\cdot 3,2^3\cdot 5,2^3\cdot 7,\ldots \\ \vdots \\ \ldots,2^n,\ldots,2^3,2^2,2,1 \end{array}$$

2.2 Sarkovskii's Theorem

Theorem 2 (Sarkovskii's Theorem). Suppose $F : \Re \to \Re$ is continuous. Suppose that F has a periodic point of period n and that n precedes k in the Sarkovskii ordering. Then F also has a periodic point of prime period k.

The proof is very similar to the proof for n = 3 which we did above. The converse (which is stated here without proof) turns out to be also true:

Theorem 3. There is a continuous function $F : \Re \to \Re$ which has a cycle of period n, but no cycles of any period that precedes n in the Sarkovskii ordering.

2.3 Comments about Sarkovskii's Theorem

- 1. Since the number 2^n form the tail of the ordering, any function that only has a finite number of cycles will have all cycles with period equal to a power of 2. This is part of why we see period doubling as a family of functions transitions to chaos.
- 2. The theorem only applies to the real number line. For example, the function defined on a circle that rotates all points by a fixed angle $2\pi/n$ has periodic points of period n but no others.
- 3. The infinity of other cycles doesn't appear on the orbit diagram of $Q_{\lambda}(x)$ because the others are repelling cycles