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Now we turn to iterated function systems(IFS), which are used to create and

analyse fractals.

Definition. Let 0 < 8 < 1 and let py, ...p, be points in the plane. Let A4;(p) =
B(p — pi) + p; for all i = 1...n. The collection of all functions Ay, ...A,, is

called an iterated function system.

The IFS draws orbits into the fixed point p; with 3 as the contraction factor.
We use the IFS to produce a fractal by using randomized iteration of the A; on

some arbitrary initial conditions.

Example. The Chaos Game IFS produces the Sierpinski Triangle Fractal
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are the vertices of an equilateral triangle. Then

Arbitrarily choose a fixed point

and suppose

A; =0.5p — pi| + pi

is the IFS for the chaos game and produces the Sierpinski Triangle. Note that
0 here is the invere of the magnification factor showing the self-similarity of the
Triangle.

Definition. The set of points to which an arbitrary obit in the plane converges

is the attractor for a given iterated function system.



It can be proven that an attractor exists for every IFS; however, proof is omitted

here.
Example. The Cantor Middle-Thirds Set as Attractor

I claim that the Cantor middle-thirds set is an attractor for the following IF'S:
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By observation, y,, = y7°3” regardless of the order chosen for iteration of these
two contraction functions. So, the orbit of any yg tends to y = 0 at a geometric
rate. To examine the behaviour of the z’s after iteration, we will compute the
orbit of xzy by alternating between using function Ay and A;. That is, the
sequence of iterations is {Ag, 41, Ag, A;1..} Starting with Ay, our alternating
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where s; = 0 when 7 is odd and s; = 1 when 7 is even.

iteration yields
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Asn — oo, x, — Z 3—1 where t; are alternately 0 or 2. Consequently, the
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sequence of x,, converges to one value if n is even and another if n is odd:
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We saw both of these points as elements of the Cantor middle-thirds set in
Section 7.3. This argument is easily expanded to cover general case, which then
satisfies my claim. So, all orbits of this IF'S converge to the Cantor middle-thirds
set. Notice, however, that this orbit does not converge to a mere point of the
Cantor set but eventually visits all regions upon sufficient randomized iterations
of Ay and A;.

Many variations on the idea of the iterated function system exist. For exam-
ple, linear contractions may contract points unequally or with different proba-
bilities. We will now consider an IFS that not only contacts points towards but

also rotates points around a fixed point.



Example. Contraction and Rotation

For our IFS, we construct a function, which contracts points by 3 and rotates
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Choosing 3 = 0.9, 0 = 7, and fixed point py = <1>, we get
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The graph of this function is on page 196 of our text.
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