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In this paper, we will complete Robert Devaney’s discussion and proof of
Sarkovskii’s Theorem and its converse. Sarkovskii’s theorem is particularly
powerful and interesting because it give us information about the periodicity
of the orbits of any continuous mapping of the real line. Before we complete the
proof of Sarkovskii’s Theorem, we must consider the Sarkovskii ordering of the
natural numbers, which lists all odd numbers except one, followed by these odds
times 2, followed by 22 times the odds, and so on until we exhaust all positive
integers except the powers of 2, which we list in decreasing order. That is,

3 ⊲ 5 ⊲ 7 ⊲ ...2 · 3 ⊲ 2 · 5 ⊲ 2 · 7 ⊲ ...2m · 3 ⊲ 2m · 5 ⊲ 2m · 7 ⊲ ...23 ⊲ 22 ⊲ 2 ⊲ 1.

Theorem 1 (Sarkovskii’s Theorem) Suppose f : R → R is a continuous

function, which has a periodic point of prime period k. If k ⊲ l in Sarkovskii’s

ordering, then f also has a periodic point of period l.

Proof:As Devaney already proved the cases where k = 2m and k odd for us,
we need only prove the theorem for prime period k = p(2m) when p is odd.

Suppose f has a point with prime period k = p(2m) where p is an odd
integer. Then f2

m

has some point(s) with prime period p. By Devaney’s proof
for odd k, f2

m

also has a point of period n(2r), where n is odd and n > p or
r ≥ 1 or n = 1. Therefore, f also has points of prime period n(2m+r), with the
same restrictions on r, m, n. Having completed Devaney’s proof, we can now
move to our main topic, the “converse” of this theorem.

Theorem 2 (Converse of Sarkovskii’s Theorem) For each k ∈ Z
+, there

exists a continuous f : R → R such that for each l ⊲ k, f has a point of prime

period k but no points of prime period l.

Proof will be offered in four separate lemmas corresponding to four subsets of
the natural numbers which encompass Sarkovskii’s ordering.

Lemma 1 For all n ∈ Z
+, there is a continuous, f : I → I, from a closed

interval to itself such that f has a point with prime period 2n + 1 but no points

of period 2n− 1.
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Proof: We want to find a function such that (1) f2n+1(x) = x for all x ∈ I and
(2) f2n−1(x) 6= x for some x ∈ I. Define f on I = [1, 2n + 1] as follows:

f(x) =















nx + 1 x ∈ [1, 2]
−x + 2n + 3 x ∈ [2, n + 1]
−2x + 3n + 4 x ∈ [n + 1, n + 2]
−x + 2n + 2 x ∈ [n + 2, 2n + 1].

After calculating the orbit of the interval 1 under iteration by f(x), we find
that seed is periodic with prime period 2n+1, which satisfies the first condition
for this proof. To satisfy the second requirement, we first examine the orbit of
f(x) on any closed interval [j, j + 1], for j ∈ 1, n + 1]. After enough iterations,
the orbit is at [j + 1, 2n + 1], which clearly is not periodic with period 2n − 1.
Repeated 2n − 1 iterations of the interval [n + 1, n + 2] eventually produces
[1, 2n + 1]. So f2n−1 has a fixed point, since it spans the entire interval. These
fixed points will either be fixed points or periodic points of f(x). When fa([n+
1, n + 2]) ∈ [n + 1, n + 2] these fixed points satisfy f(x) as fixed points and
when fa([n + 1, n + 2]) /∈ [n + 1, n + 2] then it is in [j, j + 1], which we already
discussed.

Lemma 2 For all n ∈ Z
+, there is a continuous function f : I → I, which maps

a closed interval to itself, such that f has a point with prime period 2k(2n + 1)
but no points of period 2k(2n − 1).

Proof: Here we want to create a function F (x) that doubles the period of f ,
the function from Lemma 1, originally and then continues doubling the period
with each iteration. We can do this with the following function:

D(x) =

{

f(x) + 2z x ∈ [0, z]
x − 2z x ∈ [z, 3z],

where [0, z] is the definitional domain of f above. First, D(x) has no periodic
points in [z, 3z]. Also, notice that each of the intervals [0, z] and [z, 3z] maps
to the other subinterval. That is, D([0, z]) = [2z, 3z] and D([z, 3z]) = [0, z].
Moreover, since [0, z] is the original domain of f(x), whenever x ∈ [0, z], D2(x) =
f(x). So, if a periodic x ∈ [0, z] has prime period n under iteration of f then x
has prime period of 2n under iteration by D(x) and if y ∈ [0, z] is periodic with
period 2n in D(y) then y is also periodic with period n under iteration of f(y).
So, k iterations of D(x) satisfies this lemma.

Lemma 3 For all n ∈ Z
+, there is a continuous f : I → I such that f has a

point of period 2n but not of 2n+1

Proof: This function can be easily created by repeated iteration of the D(x)
from lemma 2 on a new function: f(x) = x for x ∈ [0, 1], which has periodic
points of only period 1.

Lemma 4 For all ∈ Z
+, there is a continuous f : I → I such that f has a

point 3(2n) but no points of period (2m − 1)2n−1.
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Proof: Define a continuous f : [1, 3] → [1, 3], which is linear between points
on a 3-cycle: f(1) = 2, f(2) = 3, f(3) = 1. Doubling f as in Lemma 2 yields
a point with prime period 6, satisfying the requirement that f have a periodic
point of prime period 3(2n).

We will prove that D(x) has no points of period (2m− 1)2n−1 by induction.
If n = 1, then the prime period is odd; however, odd periods are unattainble
in Dn−1 by Lemma 2. That is, D([1, 3]) = [5, 7] and D([5, 7]) = [1, 3], as seen
above. Now we can suppose that this lemma is true for n − 1. Then Dn(x),
the nth doubling of f(x) has a periodic point of prime period 3(2n). If Dn(x)
has a point of prime period (2m− 1)2n−1 then Dn−1 must have point of period
(2m − 1)2n−2. However, this period is unattainable to Dn−1 but our assump-
tions for induction.

With these four proofs, we need notice only one other fact to complete our
proof of the converse of Sarkovskii’s theorem. If the constructed function for
any of the lemmas has a point of period b and if b ⊲ c ⊲ d then the function also
has points of periods c and d, which implies that if no points of prime period
c exist then no points of prime period b exist. Thus, the four lemmas cover
all possible k in Sarkovskii’s order and our discussion of Sarkovskii’s Theorem
ends.
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