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Solution set 2 

Warmups 

Warmup problems are quick problems for you to check your understanding; don’t turn them in. 

1.	 The half-life τ1/2 of a radioactive substance is the time until only one-half of the substance 
remains. How is τ1/2 related to the time until 1/e of the substance remains? 

Since e is bigger than 2, the 1/e time is slightly longer than the half-life: 

τ1/e = τ1/2 ln 2. 

2.	 You are a ship navigator back in the old days when clocks were the only way to measure 
longitude. If your expensively constructed clock has lost 10 minutes after, say, a sea voyage 
of 1 month, by roughly how many degrees will you be in error about your longitude? More 
importantly, by roughly how many miles will you be in error about your position? Should 
you be worried? (Assume that you are at 45◦ latitude.) 

In 24 hours the earth rotates a complete revolution, which is 360◦ in longitude. So 10 minutes, 
which is 1/(24 × 6) of 24 hours, is 360/(24 × 6)◦ = 2.5◦. 

At the equator, each degree is a distance 2πR/360 ∼ 70 miles, where R is the radius of the earth. At 
45◦ latitude, this distance is less by a factor of 

√
2, so each degree is about 50 miles. The navigation 

error is about 120 miles – enough to run aground on unexpected sandbars or rocks. 

Problems 

Turn in solutions to these problems. 

3.	 Estimate the size (in dollars/year) of the US diaper market. These market-sizing questions are 
often asked in management-consulting interviews. 

There are roughly 8 million babies in the United States, as estimated in lecture or in Chapter 14 of 
the notes. Each baby may have its diaper changed every few hours, for say 8 per day (as I found 
out in June). Each diaper may cost $0.50, so the daily cost is $32 million. Per year that becomes 

$32 million 
1 day 

× 
365 days 

1 year 
. 

You can do the calculation mentally by using a restricted number system where 1 and ‘few’ are 
the only numbers (except in exponents, which can be any integer). So 32 million is a few times 10 
million, and 365 days is a few times a hundred. The rule is that few times few equals 10, so
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32 million × 365 ∼ few · 107 
× few · 102 = (few)2 

· 109 , 

which is 1010. So 

$32 million 
1 day 

× 
365 days 

1 year 
∼ $1010/year. 

I don’t know the true answer. The few reports that I found indexed online are available for fees 
varying from $500 to $2000. So it is a valuable computation! 

4.	 Estimate the integrals by replacing the smooth curve with a rectangle, using the FWHM (full­
width, half-maximum) heuristic (Chapter 15 of the notes) to choose the rectangle. How accu­
rate is each estimate? 

∞ 1 
a. dx. [Exact answer: π.]

1 + x2 
−∞ 

∞ 
4

b. e−x dx. [Exact answer: Γ(1/4)/2 ≈ 1.813.] 

The maximum of y = 1/(1 + x2) is y = 1, at x = 0. The half-maximum is y = 1/2, which is 
attained when x = ±1. So the full width at the half maximum (FWHM) is 2. The discretized 
area (shaded) is therefore 2 × 1 = 2. The exact integral is ∫ 

∞ 1 
dx = tan−1 x 

∣∣∣∣∞ 
= π. 

−∞ 1 + x2 −∞ 

So the estimate of 2 is low by roughly 40%. Not terrible, but not great. 

∫ 

−∞ 

The maximum is again y = 1 at x = 0. The half-maximum of y = 1/2 is attained when x = 
±(ln 2)1/4. So the discretized area is 2 × (ln 2)1/4 

≈ 1.825, an overestimate of 0.6%. 

5.	 The period of a pendulum is approximately √   
l  θ0

2 T = 2π 1 +  , g 16 

where θ0 (measured in radians!) is the angle at which the pendulum is started. 

Roughly how many seconds per day does a pendulum clock with θ0 = 10◦ lose compared to 
a pendulum clock with θ0 = 5◦, if both have the same string length l? [See Problem 2 if you 
want to know whether the loss of those seconds is significant for navigation.]
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The clock with the larger amplitude has a longer period, so it ticks less often in a day than does the 
clock with the smaller amplitude. How many fewer ticks? Compute it by fractional changes. 

The fractional difference in period comes from the fractional change in the factor 1 + θ2 
0/16. This 

factor is roughly 1, and it changes by α2/16−β2/16, where α is the large amplitude of 10◦ (measured 
in radians) and β is small amplitude of 5◦ (measured in radians). 

Numerically, the fractional change is roughly 0.0014. A day has 86 400 seconds, so that fractional 
change in period results in a loss of 86 400 × 0.0014 seconds, which is about 100 seconds. 

Bonus problems 

Bonus problems are more difficult but optional problems for those who are curious. 

6. Guess the functional form of T(θ0) for θ0 ≈ π. 

If the pendulum started at exactly θ0 = π, then it would never move, ignoring quantum fluctua­
tions. If it starts close to π, then the deviation from π will grow rapidly in a positive-feedback loop: 
As the deviation grows, so does the gravitational torque, so the deviation grows even more rapidly, 
etc. When θ0 is very, very close to π, most of the period comes from waiting for the deviation to 
get large. 

To estimate the period, we therefore need to know how the deviation grows. The equation of an 
inverted pendulum is just the same as the regular pendulum but with the opposite sign for the 
torque. So: 

d2φ 

dt2 − 
g 
l 

sin φ = 0, 

where φ = π−θ is the deviation from vertical. When φ is small, this equation results in exponential 

growth with time constant 
√ 

l/g. So an initial angle π − φ turns into π − φet/
√

l/g after a time t. Let’s 
say that the exponential-growth phase of the motion stops when φ is roughly 1. For φ to reach 
1 takes a time 

√ 
l/g ln(1/φ), which is our estimate for the period. This estimate assumes that the 

exponential-growth phase takes much longer than the typical period, an assumption that is true 
only when the initial angle is very, very, very close to π. 

Therefore, in extreme case of an initial angle near π, the period grows logarithmically – i.e. very 
slowly – to infinity as the initial angle gets closer to π.
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