Chapters and exercises given with a numbering are from Basic Analysis: Introduction to Real Analysis (Vol I) by J. Lebl.

Reading Section 0.3

Exercises

1. Exercise 0.3.6
2. Exercise 0.3.11
3. Exercise 0.3.12
4. Exercise 0.3.15
5. Exercise 0.3.19
6. In this exercise, you will prove that

$$
|\{q \in \mathbb{Q}: q>0\}|=|\mathbb{N}| .
$$

In what follows, we will use the following theorem without proof:
Theorem. Let $q \in \mathbb{Q}$ with $q>0$. Then

1) if $q \in \mathbb{N}$ and $q \neq 1$, then there exists unique prime numbers $p_{1}<p_{2}<\cdots<$ p_{N} and unique exponents $r_{1}, \ldots, r_{N} \in \mathbb{N}$ such that

$$
q=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{N}^{r_{N}},
$$

2) if $q \notin \mathbb{N}$, then there exist unique prime numbers $p_{1}<p_{2}<\ldots<p_{N}, q_{1}<$ $q_{2}<\cdots<q_{M}$ with $p_{i} \neq q_{j}$ for all $i \in\{1, \ldots, N\}, j \in\{1, \ldots M\}$, and unique exponents $r_{1}, \ldots, r_{N}, s_{1}, \ldots s_{M} \in \mathbb{N}$ such that

$$
q=\frac{p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{N}^{r_{N}}}{q_{1}^{s_{1}} q_{2}^{s_{2}} \cdots q_{M}^{s_{M}}} .
$$

Define $f:\{q \in \mathbb{Q}: q>0\} \rightarrow \mathbb{N}$ as follows: $f(1)=1$, if $q \in \mathbb{N} \backslash\{1\}$ is given by (\dagger), then

$$
f(q)=p_{1}^{2 r_{1}} \cdots p_{N}^{2 r_{N}}
$$

and if $q \in \mathbb{Q} \backslash \mathbb{N}$ is given by (\ddagger), then

$$
f(q)=p_{1}^{2 r_{1}} \cdots p_{N}^{2 r_{N}} q_{1}^{2 s_{1}-1} \cdots q_{M}^{2 s_{M}-1} .
$$

(a) Compute $f(4 / 15)$. Find q such that $f(q)=108$.
(b) Use the Theorem to prove that f is a bijection.

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

