Exercises given with a numbering are from Basic Analysis: Introduction to Real Analysis (Vol I) by J. Lebl.

Reading Sections 4.1, 4.2 (Lebl)

## Exercises

1. Let $I$ be an interval. A function $f: I \rightarrow \mathbb{R}$ is said to satisfy a Hölder condition with exponent $\alpha>0$ if there exists a constant $C>0$ such that if $x, y \in I$ then

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha} .
$$

(a) Prove that if $f: I \rightarrow \mathbb{R}$ satisfies a Hölder condition with exponent $\alpha>0$, then $f$ is uniformly continuous on $I$.
(b) Prove that if $f: I \rightarrow \mathbb{R}$ satisfies a Hölder condition with exponent $\alpha>1$, then $f$ is constant.
2. Exercise 4.1.11
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Prove that $f$ is Lipschitz continuous if and only if $f^{\prime}$ is a bounded function.
4. Exercise 4.2.9
5. Exercise 4.2.13

MIT OpenCourseWare
https://ocw.mit.edu

### 18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

