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MATH 18.100A/18.1001 Assignment 7 

Exercises given with a numbering are from Basic Analysis: Introduction to Real 
Analysis (Vol I) by J. Lebl. 

Reading Sections 2.5, 2.6, 3.1 

Exercises 

1 

1. Exercise 2.6.2

2. Find all real numbers x so that the series converges.
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4. Prove that every real number is a cluster point of the set of irrational numbers.

5. Exercise 3.1.13

6. Let S ⊂ R, let c be a cluster point of S, and let f : S → R.
(a) Assume limx→c f(x) exists. Prove that there exist B ≥ 0 and δ > 0 such that

if x ∈ S and 0 < |x− c| < δ then |f(x)| ≤ B.

(b) Assume that limx→c f(x) = L > 0. Prove that there exists δ > 0 such that if
x ∈ S and 0 < |x− c| < δ then f(x) > 0.
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