MATH 18.100A/18.1001 Assignment 7

Exercises given with a numbering are from Basic Analysis: Introduction to Real
Analysis (Vol 1) by J. Lebl.

Reading Sections 2.5, 2.6, 3.1
Exercises

1. Exercise 2.6.2

2. Find all real numbers x so that the series converges.
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(Cauchy-Schwarz inequality) Prove that if Y |z,|? and Y |y,|* converge, then the

series Y x,y, converges absolutely and
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4. Prove that every real number is a cluster point of the set of irrational numbers.
5. Exercise 3.1.13
6. Let S C R, let ¢ be a cluster point of S, and let f: S — R.

(a) Assume lim,_,. f(z) exists. Prove that there exist B > 0 and § > 0 such that
ifxe Sand 0<|z—c| <9 then |f(x)] < B.

(b) Assume that lim,_,. f(z) = L > 0. Prove that there exists § > 0 such that if
reSand 0 < |r—c| < then f(x) > 0.
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