Exercises given with a numbering are from $Basic\ Analysis:\ Introduction\ to\ Real\ Analysis\ (Vol\ I)$ by J. Lebl.

Reading Sections 3.3, 3.4, 3.5

Exercises

- 1. Exercise 3.3.11
- 2. Exercise 3.4.3
- 3. Exercise 3.4.8
- 4. Let $S \subset \mathbb{R}$. We say that $f: S \to \mathbb{R}$ is Lipschitz continuous on S if there exists $L \geq 0$ such that for all $x, y \in S$,

$$|f(x) - f(y)| \le L|x - y|.$$

Prove that if $f: S \to \mathbb{R}$ is Lipschitz continuous on S then f is uniformly continuous on S.

- 5. (a) Prove that $f(x) = \cos x$ is Lipschitz continuous on \mathbb{R} .
 - (b) Prove that $f(x) = x^{1/3}$ is uniformly continuous on [0,1] and is not Lipschitz continuous on [0,1].
- 6. Let $R \in \mathbb{R}$, and let $f: [R, \infty) \to \mathbb{R}$. We say that f(x) converges to L as $x \to \infty$ if for every $\epsilon > 0$ there exists $M \ge R$ such that for all $x \ge M$ we have $|f(x) L| < \epsilon$. We write $f(x) \to L$ as $x \to \infty$ or

$$\lim_{x \to \infty} f(x) = L.$$

[A similar definition can be formulated for limits as $x \to -\infty$ but we will not do so here.]

(a) Prove that

$$\lim_{x \to \infty} \frac{x^2}{x^2 + 1} = 1.$$

(b) Prove that

$$\lim_{x \to \infty} \sin x$$

does not exist.

MIT OpenCourseWare https://ocw.mit.edu

18.100A / 18.1001 Real Analysis Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.