18.100A: Complete Lecture Notes

Lecture 1:

Sets, Set Operations, and Mathematical Induction

For this class, we will be using the book Introduction to Real Analysis, Volume I by Jifi Lebl [L]. T will use B

to end proofs of examples, and [ to end proofs of theorems.

Basic Set Theory

Remark 1. There are two main goals of this class:

1. Gain experience with proofs.

2. Prove statements about real numbers, functions, and limits.

Sets

A set is a collection of objects called elements or members of that set. The empty set (denoted @) is the set with
no elements. There are a few symbols that are super helpful to know as a shorthand, and will be used throughout
the course. Let S be a set. Then

* a € S means that "a is an element in S." + 3 means "there exists."

+ a ¢ S means that "a is not an element in S."  d!l means "there exists a unique."
* V means "for all." « — means "implies."

» := means "define." » <= means "if and only if."

Definition 2 (Set Relations)

We want to relate different sets, and thus we get the following notation/definitions:

1. A set A is a subset of B, A C B, if every element of A isin B. Given A C B,ifa € A = a € B.
2. Two sets A and B are equal, A= B, if A C B and B C A.

3. A set A is a proper subset of B, AC Bif AC B and A # B.

One way we can describe a set is using "set building notation". We write
{xe Al P(z)} or {z|P(z)}

to mean "all z € A that satisfies property P(z)". One example of this would be {x |  is an even number}. There

are a few key sets that we will use throughout this class:

1. The set of natural numbers: N={1,2,3,4,...}.

2. The set of integers: Z = {0,1,-1,2,-2,3,-3,...}.


https://www.jirka.org/ra/realanal.pdf

3. The set of rational numbers: Q = {* | m,n € Z and n # 0}.

4. The set of real numbers: R.

It follows that
NcZcQcCR.

The fourth item on this list brings us to an important question, and the first goal of our course:

Problem 3
How do we describe R?

We will answer this question in Lectures 3 and 4. In the meantime, let’s continue our study of sets and proof

methods. Given sets A and B, we have the following definitions:

1. The union of A and B is the set AUB = {z |z € A or z € B}.

2. The intersection of A and B is the set ANB = {z |z € A and = € B}.
3. The set difference of A and B is the set A\ B={x € A |z ¢ B}.

4. The complement of A is the set A° = {x |z ¢ A}.

5. A and B are disjoint if AN B = 0.
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Theorem 4 (De Morgan’s Laws)
If A, B, C are sets then

1. (BUC)¢ = B°NC¢,

2. (BNC)¢ = B°UC¢,

3. A\(BUC) =(A\B)N(4\C),

4. and A\ (BNC)=(A\B)U(A\ ).

We will prove the first statement to give an example of how such a proof would go, but the rest will be left to you.
Proof: Let B, C be sets. We must prove that

(BUC)*C B°NC° and B°NC°cC (BUCQ)-.

Ifxe(BUC) — 2¢ BUC — x¢ Bandz ¢ C. Hence, z € B and x € C° = x € B°NC°. Thus,
(BUC)* C B°ncCe.



IfxeB°NC°thenz € Band 2 € C° = ¢ Band 2 ¢ C. Hence, z ¢ BUC = 1z € (BUC(C). Thus,
BenC¢cC (BUCQ)-. O

Mathematical Induction

We will now talk about some of the biggest proof methods there are. Firstly, note that N ={1,2,3,...} has an
ordering (as 1 <2<3<...).

Axiom 5 (Well-ordering property)
The well-ordering property of N states that if S C N then there exists an z € S such that x < y for all y € S.
In other words, there is always a smallest element.

Note that this is an axiom, and thus we have to assume this without proof.

Theorem 6 (Induction)
This concept was invented by Pascal in 1665. Let P(n) be a statement depending on n € N. Assume that

1. (Base case) P(1) is true and

2. (Inductive step) if P(m) is true then P(m + 1) is true.
Then, P(n) is true for all n € N.

Proof: Let S = {n € N| P(n) is not true}. We wish to show that S = (). We will prove this by contradiction.

Remark 7. When we prove something by contradiction, we assume the conclusion we want is false, and then show
that we will reach a false statement. Rules of logic thus imply that the initial statement must be false. Thus in this

case, we will assume S # O and derive a false statement.

Suppose that S # (). Then, by the well-ordering property of N, S has a least element m € S. Since P(1) is
true, m # 1, i.e. m > 1. Since m is a least element, m —1 ¢ S = P(m — 1) is true. This implies that P(m)
is true = m ¢ S by assumption. But then m € S and m ¢ S. This is a contradiction. Thus S = §) and hence
P(n) is true for all n € N. O

Let’s see an example of induction in action.

Theorem 8
For all ¢ # 1 in the real numbers, and for all n € N,
1— ¢t

l+c+c+--+c"=
1-c

Proof: We will prove this by induction. First, we prove the base case (n = 1). The left hand side of the
equation is 1+ ¢ for n = 1. The right hand side is % = % = 14 c. Hence, the base case has been shown.
Assume that the equation is true for k € N, in other words

1— k+1
1+C+C2+"'+Ck:170
—C



Thus,

= ltet MM = ret P44 F) M
1— k+1
:1750+Ck+1
1—Ck+1+0k+1(1—6)
(1-c)

1— C(k+1)+1

1—c

Therefore, our proof is complete. O

Let’s do another example:

Theorem 9
Foralle¢> -1, (14+¢)” > 1+ nc for all n € N.

Proof: We prove this through induction. In the base case, we have: (1+4c¢)! =1+ 1-c¢. For the inductive step,
suppose that
(I+e)™>1+me.

Then,
A4+ =10 +e)™ (1+c).
By assumption,

>(14+me)-(14¢)
=1+ (m+1)c+mc
> 1+ (m+1)c

By induction, our proof is complete. O
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