18.100A: Complete Lecture Notes

Lecture 1:

Sets, Set Operations, and Mathematical Induction

For this class, we will be using the book Introduction to Real Analysis, Volume I by Jiří Lebl [L]. I will use to end proofs of examples, and \square to end proofs of theorems.

Basic Set Theory

Remark 1. There are two main goals of this class:

1. Gain experience with proofs.
2. Prove statements about real numbers, functions, and limits.

Sets

A set is a collection of objects called elements or members of that set. The empty set (denoted \emptyset) is the set with no elements. There are a few symbols that are super helpful to know as a shorthand, and will be used throughout the course. Let S be a set. Then

- $a \in S$ means that " a is an element in S."
- \exists means "there exists."
- $a \notin S$ means that " a is not an element in S. "
- \exists ! means "there exists a unique."
- \forall means "for all."
- \Longrightarrow means "implies."
- := means "define."
- \Longleftrightarrow means "if and only if."

Definition 2 (Set Relations)

We want to relate different sets, and thus we get the following notation/definitions:

1. A set A is a subset of $B, A \subset B$, if every element of A is in B. Given $A \subset B$, if $a \in A \Longrightarrow a \in B$.
2. Two sets A and B are equal, $A=B$, if $A \subset B$ and $B \subset A$.
3. A set A is a proper subset of $B, A \subsetneq B$ if $A \subset B$ and $A \neq B$.

One way we can describe a set is using "set building notation". We write

$$
\{x \in A \mid P(x)\} \quad \text { or } \quad\{x \mid P(x)\}
$$

to mean "all $x \in A$ that satisfies property $P(x)$ ". One example of this would be $\{x \mid x$ is an even number $\}$. There are a few key sets that we will use throughout this class:

1. The set of natural numbers: $\mathbb{N}=\{1,2,3,4, \ldots\}$.
2. The set of integers: $\mathbb{Z}=\{0,1,-1,2,-2,3,-3, \ldots\}$.
3. The set of rational numbers: $\mathbb{Q}=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathbb{Z}\right.$ and $\left.n \neq 0\right\}$.
4. The set of real numbers: \mathbb{R}.

It follows that

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}
$$

The fourth item on this list brings us to an important question, and the first goal of our course:

Problem 3

How do we describe \mathbb{R} ?

We will answer this question in Lectures 3 and 4. In the meantime, let's continue our study of sets and proof methods. Given sets A and B, we have the following definitions:

1. The union of A and B is the set $A \cup B=\{x \mid x \in A$ or $x \in B\}$.
2. The intersection of A and B is the set $A \cap B=\{x \mid x \in A$ and $x \in B\}$.
3. The set difference of A and B is the set $A \backslash B=\{x \in A \mid x \notin B\}$.
4. The complement of A is the set $A^{c}=\{x \mid x \notin A\}$.
5. A and B are disjoint if $A \cap B=\emptyset$.

$A \cup B$

Theorem 4 (De Morgan's Laws)

If A, B, C are sets then

1. $(B \cup C)^{c}=B^{c} \cap C^{c}$,
2. $(B \cap C)^{c}=B^{c} \cup C^{c}$,
3. $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$,
4. and $A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)$.

We will prove the first statement to give an example of how such a proof would go, but the rest will be left to you.
Proof: Let B, C be sets. We must prove that

$$
(B \cup C)^{c} \subset B^{c} \cap C^{c} \text { and } B^{c} \cap C^{c} \subset(B \cup C)^{c}
$$

If $x \in(B \cup C)^{c} \Longrightarrow x \notin B \cup C \Longrightarrow x \notin B$ and $x \notin C$. Hence, $x \in B^{c}$ and $x \in C^{c} \Longrightarrow x \in B^{c} \cap C^{c}$. Thus, $(B \cup C)^{c} \subset B^{c} \cap C^{c}$.

If $x \in B^{c} \cap C^{c}$ then $x \in B^{c}$ and $x \in C^{c} \Longrightarrow x \notin B$ and $x \notin C$. Hence, $x \notin B \cup C \Longrightarrow x \in(B \cup C)^{c}$. Thus, $B^{c} \cap C^{c} \subset(B \cup C)^{c}$.

Mathematical Induction

We will now talk about some of the biggest proof methods there are. Firstly, note that $\mathbb{N}=\{1,2,3, \ldots\}$ has an ordering (as $1<2<3<\ldots$).

Axiom 5 (Well-ordering property)
The well-ordering property of \mathbb{N} states that if $S \subset \mathbb{N}$ then there exists an $x \in S$ such that $x \leq y$ for all $y \in S$. In other words, there is always a smallest element.

Note that this is an axiom, and thus we have to assume this without proof.

Theorem 6 (Induction)

This concept was invented by Pascal in 1665 . Let $P(n)$ be a statement depending on $n \in \mathbb{N}$. Assume that

1. (Base case) $P(1)$ is true and
2. (Inductive step) if $P(m)$ is true then $P(m+1)$ is true.

Then, $P(n)$ is true for all $n \in \mathbb{N}$.

Proof: Let $S=\{n \in \mathbb{N} \mid P(n)$ is not true $\}$. We wish to show that $S=\emptyset$. We will prove this by contradiction.
Remark 7. When we prove something by contradiction, we assume the conclusion we want is false, and then show that we will reach a false statement. Rules of logic thus imply that the initial statement must be false. Thus in this case, we will assume $S \neq \emptyset$ and derive a false statement.

Suppose that $S \neq \emptyset$. Then, by the well-ordering property of \mathbb{N}, S has a least element $m \in S$. Since $P(1)$ is true, $m \neq 1$, i.e. $m>1$. Since m is a least element, $m-1 \notin S \Longrightarrow P(m-1)$ is true. This implies that $P(m)$ is true $\Longrightarrow m \notin S$ by assumption. But then $m \in S$ and $m \notin S$. This is a contradiction. Thus $S=\emptyset$ and hence $P(n)$ is true for all $n \in \mathbb{N}$.

Let's see an example of induction in action.

Theorem 8

For all $c \neq 1$ in the real numbers, and for all $n \in \mathbb{N}$,

$$
1+c+c^{2}+\cdots+c^{n}=\frac{1-c^{n+1}}{1-c}
$$

Proof: We will prove this by induction. First, we prove the base case $(n=1)$. The left hand side of the equation is $1+c$ for $n=1$. The right hand side is $\frac{1-c^{2}}{1-c}=\frac{(1-c)(1+c)}{1-c}=1+c$. Hence, the base case has been shown.

Assume that the equation is true for $k \in \mathbb{N}$, in other words

$$
1+c+c^{2}+\cdots+c^{k}=\frac{1-c^{k+1}}{1-c}
$$

Thus,

$$
\begin{aligned}
\Longrightarrow 1+c+c^{2}+\cdots+c^{k}+c^{k+1} & =\left(1+c+c^{2}+\cdots+c^{k}\right)+c^{k+1} \\
& =\frac{1-c^{k+1}}{1-c}+c^{k+1} \\
& =\frac{1-c^{k+1}+c^{k+1}(1-c)}{(1-c)} \\
& =\frac{1-c^{(k+1)+1}}{1-c}
\end{aligned}
$$

Therefore, our proof is complete.
Let's do another example:

Theorem 9

For all $c \geq-1,(1+c)^{n} \geq 1+n c$ for all $n \in \mathbb{N}$.

Proof: We prove this through induction. In the base case, we have: $(1+c)^{1}=1+1 \cdot c$. For the inductive step, suppose that

$$
(1+c)^{m} \geq 1+m c
$$

Then,

$$
(1+c)^{m+1}=(1+c)^{m} \cdot(1+c)
$$

By assumption,

$$
\begin{aligned}
& \geq(1+m c) \cdot(1+c) \\
& =1+(m+1) c+m c^{2} \\
& \geq 1+(m+1) c
\end{aligned}
$$

By induction, our proof is complete.

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

