18.100A: Complete Lecture Notes

Lecture 11:
Absolute Convergence and the Comparison Test for Series

Recall 1

Last time we showed that if $\sum x_{n}$ converges then $\lim _{n \rightarrow \infty} x_{n}=0$.

Question 2. Is the converse true? Does $\lim _{n \rightarrow \infty} x_{n}=0 \Longrightarrow \sum x_{n}$ converges?

Theorem 3

The series $\sum_{n=1}^{\infty} \frac{1}{n}$ does not converge.

Proof: We will show that there exists a subsequence of $s_{m}=\sum_{n=1}^{m} \frac{1}{n}$ which is unbounded, which will imply the series diverges. Consider, for $\ell \in \mathbb{N}$,

$$
s_{2^{\ell}}=\sum_{n=1}^{2^{\ell}} \frac{1}{n}
$$

Then,

$$
\begin{aligned}
s_{2^{\ell}} & =1+\left(\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{8}\right)+\ldots\left(\frac{1}{2^{\ell-1}+1}+\cdots+\frac{1}{2^{\ell}}\right) \\
& =1+\sum_{\lambda=1}^{\ell} \sum_{n=2^{\lambda-1}+1}^{2^{\lambda}} \frac{1}{n} \\
& \geq 1+\sum_{\lambda=1}^{\ell} \sum_{n=2^{\lambda-1}+1}^{2^{\lambda}} \frac{1}{2^{\lambda}} \\
& =1+\sum_{\lambda=1}^{\ell} \frac{1}{2^{\lambda}}\left(2^{\lambda}-\left(2^{\lambda-1}+1\right)+1\right) \\
& =1+\sum_{\lambda=1}^{\ell} \frac{2^{\lambda-1}}{2^{\lambda}} \\
& =1+\frac{\ell}{2} .
\end{aligned}
$$

Thus, $\left\{s_{2^{\ell}}\right\}_{\ell=1}^{\infty}$ is unbounded which implies $\left\{s_{2^{\ell}}\right\}$ does not converge.
Remark 4. The series $\sum \frac{1}{n}$ is called the harmonic series.

Theorem 5

Let $\alpha \in \mathbb{R}$ and $\sum x_{n}$ and $\sum y_{n}$ be convergent series. Then the series $\sum\left(\alpha x_{n}+y_{n}\right)$ converges and

$$
\sum\left(\alpha x_{n}+y_{n}\right)=\alpha \sum x_{n}+\sum y_{n}
$$

Proof: The partial sums satisfy

$$
\sum_{n=1}^{m}\left(\alpha x_{n}+y_{n}\right)=\alpha \sum_{n=1}^{m} x_{n}+\sum_{n=1}^{m} y_{n}
$$

By linear properties of limits, it follows that

$$
\lim _{m \rightarrow \infty} \sum_{n=1}^{m}\left(\alpha x_{n}+y_{n}\right)=\alpha \sum x_{n}+\sum y_{n}
$$

Series with non-negative terms are easier to work with than general series as then $\left\{s_{n}\right\}$ is a monotone sequence.

Theorem 6

If $\forall n \in \mathbb{N} x_{n} \geq 0$, then $\sum x_{n}$ converges if and only if $\left\{s_{m}\right\}$ is bounded.

Proof: If $x_{n} \geq 0$ for all $n \in \mathbb{N}$ then

$$
s_{m+1}=\sum_{n=1}^{m+1} x_{n}=\sum_{n=1}^{m} x_{n}+x_{m+1}=s_{m}+x_{m+1} \geq s_{m}
$$

Thus, $\left\{s_{m}\right\}$ is a monotone increasing sequence. Therefore, $\left\{s_{m}\right\}$ converges if and only if $\left\{s_{m}\right\}$ is bounded.

Definition 7

$\sum x_{n}$ converges absolutely if $\sum\left|x_{n}\right|$ converges.

Theorem 8

If $\sum x_{n}$ converges absolutely then $\sum x_{n}$ converges.

Proof: Suppose $\sum\left|x_{n}\right|$ converges. We will then show that $\sum x_{n}$ is Cauchy.
Claim: $\forall m \geq 2,\left|\sum_{n=1}^{m} x_{n}\right| \leq \sum_{n=1}^{m}\left|x_{n}\right|$. We prove this claim by induction. For $m=2$, this states that $\left|x_{1}+x_{2}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|$, which follows by the Triangle Inequality. Suppose for all $\left|\sum_{n=1}^{\ell} x_{n}\right| \leq \sum_{n=1}^{\ell}\left|x_{n}\right|$. Then,

$$
\left|\sum_{n=1}^{\ell+1} x_{n}\right| \leq\left|\sum_{n=1}^{\ell} x_{n}\right|+\left|x_{\ell+1}\right| \leq \sum_{n=1}^{\ell}\left|x_{n}\right|+\left|x_{\ell+1}\right|=\sum_{n=1}^{\ell+1}\left|x_{n}\right|
$$

We now prove that $\sum x_{n}$ is Cauchy. Let $\epsilon>0$. Since $\sum\left|x_{n}\right|$ converges, $\sum\left|x_{n}\right|$ is Cauchy. Therefore, there exists an $M_{0} \in \mathbb{N}$ such that for all $\ell>m \geq M_{0}$,

$$
\sum_{n=m+1}^{\ell}\left|x_{n}\right|<\epsilon
$$

Choose $M=M_{0}$. Then, for all $\ell>m \geq M$,

$$
\left|\sum_{n=m+1}^{\ell} x_{n}\right| \leq \sum_{n=m+1}^{\ell}\left|x_{n}\right|<\epsilon
$$

Hence, $\sum x_{n}$ is Cauchy, and thus converges.
Remark 9. We will see that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ is convergent but not absolutely convergent.
Notice that it is immediately clear that this series is not absolutely convergent as $\sum\left|\frac{(-1)^{n}}{n}\right|=\sum \frac{1}{n}$ (the harmonic series), which doesn't converge.

Convergence tests

Theorem 10 (Comparison Test)
Suppose for all $n \in \mathbb{N} 0 \leq x_{n} \leq y_{n}$. Then,

1. if $\sum y_{n}$ converges, then $\sum x_{n}$ converges.
2. if $\sum x_{n}$ diverges, then $\sum y_{n}$ diverges.

Proof:

1. If $\sum y_{n}$ converges, then $\left\{\sum_{n=1}^{m} y_{n}\right\}_{m=1}^{\infty}$ is bounded. In other words, there exists a $B \geq 0$ such that for all $m \in \mathbb{N}$,

$$
\sum_{n=1}^{m} y_{n} \leq B
$$

Thus, for all $m \in \mathbb{N}, \sum_{n=1}^{m} x_{n} \leq \sum_{n=1}^{m} y_{n} \leq B$. Therefore, the partial sums of $\left\{x_{n}\right\}$ are bounded, which implies $\sum x_{n}$ converges.
2. If $\sum x_{n}$ diverges, then $\left\{\sum_{n=1}^{m} x_{n}\right\}_{m=1}^{\infty}$ is unbounded. We now prove that

$$
\left\{\sum_{n=1}^{m} y_{n}\right\}_{m=1}^{\infty}
$$

is also unbounded. Let $B \geq 0$. Then, $\exists m \in \mathbb{N}$ such that

$$
\sum_{n=1}^{m} x_{n} \geq B
$$

Therefore, $\sum_{n=1}^{m} y_{n} \geq \sum_{n=1}^{m} x_{n} \geq B$. Thus, $\left\{\sum_{n=1}^{m} y_{n}\right\}_{m=1}^{\infty}$ is unbounded, which implies $\sum y_{n}$ diverges.

Remark 11. We will see that geometric series and the Comparison Test imply everything!

Theorem 12

For $p \in \mathbb{R}$, the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if and only if $p>1$.

Proof: (\Longrightarrow) We prove this direction through contradiction. Suppose $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges and $p \leq 1$. Then, $\frac{1}{n^{p}} \geq \frac{1}{n}$, and $\sum \frac{1}{n}$ diverges. Therefore, by the Comparison Test, $\sum \frac{1}{n^{p}}$ also diverges. Hence, if $\sum \frac{1}{n^{p}}$ converges, then $p>1$.
(\Longleftarrow) Suppose $p>1$. We first prove that a subsequence of the partial series is bounded.

Claim 1: $\forall k \in \mathbb{N}, s_{2^{k}} \leq 1+\frac{1}{1-2^{-(p-1)}}$. Proof:

$$
\begin{aligned}
s_{2^{k}} & =1+\sum_{\ell=1}^{k} \sum_{n=2^{\ell-1}+1}^{2^{\ell}} \frac{1}{n^{p}} \\
& \leq 1+\sum_{\ell=1}^{k} \sum_{n=2^{\ell-1}+1}^{2^{\ell}} \frac{1}{\left(2^{\ell-1}+1\right)^{p}} \\
& \leq 1+\sum_{\ell=1}^{k} 2^{-p(\ell-1)}\left(2^{\ell}-\left(2^{\ell-1}+1\right)+1\right) \\
& =1+\sum_{\ell=1}^{k} 2^{-(p-1)(\ell-1)} \\
& =1+\sum_{\ell=0}^{k-1} 2^{-(p-1) \ell} \\
& \leq 1+\sum_{\ell=0}^{\infty} 2^{-(p-1) \ell} \\
& =1+\frac{1}{1-2^{-(p-1)}}
\end{aligned}
$$

using the fact that $p-1>0$, and using properties of geometric series. Thus, Claim 1 is proven.
Claim 2: $\left\{s_{m}=\sum_{n=1}^{m} \frac{1}{n^{p}}\right\}$ is bounded. Proof: Let $m \in \mathbb{N}$. Since $2^{m}>m$, we have that

$$
s_{m}=\sum_{n=1}^{m} \frac{1}{n^{p}} \leq \sum_{n=1}^{2^{m}} n^{-p} \leq 1+\frac{1}{1-2^{-(p-1)}}
$$

Hence, the partial sums are bounded, which implies $\left\{s_{m}\right\}$ converges.

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

