18.100A: Complete Lecture Notes

Lecture 12:
The Ratio, Root, and Alternating Series Tests

We continue our study of convergence tests.

Theorem 1 (Ratio test)

Suppose $x_{n} \neq 0$ for all n and

$$
L=\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}
$$

exists. Then,

1. if $L<1$ then $\sum x_{n}$ converges absolutely.
2. if $L>1$ then $\sum x_{n}$ diverges.

Proof: We will first prove the second part of this theorem.
2) Suppose $L>1$ and $\alpha \in(1, L)$. Then, there exists $M_{0} \in \mathbb{N}$ such that for all $N \geq M_{0}, \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|} \geq \alpha \geq 1$. Thus, for all $n \geq M_{0}$,

$$
\left|x_{n+1}\right| \geq\left|x_{n}\right| \Longrightarrow \lim _{n \rightarrow \infty}\left|x_{n}\right| \neq 0
$$

Therefore, $\sum x_{n}$ diverges.

1) Now suppose that $L<1$. Let $\alpha \in(L, 1)$. Then, there exists $M_{0} \in \mathbb{N}$ such that $\forall n \geq M_{0}, \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}<\alpha$. Therefore, $\forall n \geq M_{0},\left|x_{n+1}\right| \leq \alpha\left|x_{n}\right|$. In other words, for all $n \geq M_{0}$,

$$
\left|x_{n}\right| \leq \alpha\left|x_{n-1}\right| \leq \alpha^{2}\left|x_{n-2}\right| \leq \cdots \leq \alpha^{n-M_{0}}\left|x_{M_{0}}\right|
$$

Let $m \in \mathbb{N}$. Then,

$$
\begin{aligned}
\sum_{n=1}^{m}\left|x_{n}\right| & =\sum_{n=1}^{M_{0}-1}\left|x_{n}\right|+\sum_{n=M_{0}}^{m}\left|x_{n}\right| \\
& \leq \sum_{n=1}^{M_{0}-1}\left|x_{n}\right|+\left|x_{M_{0}}\right| \sum_{n=M_{0}}^{m} \alpha^{n-M_{0}} \\
& \leq \sum_{n=1}^{M_{0}-1}\left|x_{n}\right|+\left|x_{M_{0}}\right| \sum_{\ell=0}^{\infty} \alpha^{\ell} \\
& =\sum_{n=1}^{M_{0}-1}\left|x_{n}\right|+\frac{\left|x_{M_{0}}\right|}{1-\alpha}
\end{aligned}
$$

Therefore, $\left\{\sum_{n=1}^{m}\left|x_{n}\right|\right\}_{m=1}^{\infty}$ is bounded, and thus $\sum\left|x_{n}\right|$ converges. Hence, x_{n} is absolutely convergent.

Let's consider two examples where we can use the Ratio test.

Example 2

Show the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+1}$ converges absolutely.

Proof: Notice

$$
\left|\frac{(-1)^{n}}{n^{2}+1}\right| \leq \frac{1}{n^{2}+1}<\frac{1}{n^{2}}
$$

and hence

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1}}{(n+1)^{2}+1}}{\frac{(-1)^{n}}{n^{2}+1}}\right|<\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=1
$$

Example 3

Show that $\forall x \in \mathbb{R}, \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges absolutely.

Proof: This immediately follows from the Ratio test, noting that

$$
\lim _{n \rightarrow \infty} \frac{|x|^{n+1}}{(n+1)!} \cdot \frac{n!}{|x|^{n}}=\lim _{n \rightarrow \infty} \frac{|x|}{n+1}=0
$$

Remark 4. As seen above, the Ratio test can be really helpful to use when we have a $(-1)^{n}$ or a factorial in the argument. Also note that if $L=1$ then we the test doesn't apply.

Theorem 5 (Root test)
Let $\sum x_{n}$ be a series and suppose that

$$
L=\lim _{n \rightarrow \infty}\left|x_{n}\right|^{1 / n}
$$

exists. Then,

1. if $L<1$ then $\sum x_{n}$ converges absolutely.
2. if $L>1$ then $\sum x_{n}$ diverges.

Proof:

1. Suppose $L<1$. Let $L<r<1$. Then, since $\left|x_{n}\right|^{1 / n} \rightarrow L, \exists M \in \mathbb{N}$ such that $\forall n \geq M,\left|x_{n}\right|^{1 / n}<r$. Therefore, for all $n \geq M,\left|x_{n}\right| \leq r^{n}$. Thus, for all $m \in \mathbb{N}$,

$$
\begin{aligned}
\sum_{n=1}^{m}\left|x_{n}\right| & =\sum_{n=1}^{M-1}\left|x_{n}\right|+\sum_{n=M}^{m}\left|x_{n}\right| \\
& \leq \sum_{n=1}^{M-1}\left|x_{n}\right|+\sum_{n=M}^{m} r^{n} \\
& \leq \sum_{n=1}^{M-1}\left|x_{n}\right|+\sum_{n=M}^{\infty} r^{n} \\
& =\sum_{n=1}^{M-1}\left|x_{n}\right|+\frac{r^{M}}{1-r} .
\end{aligned}
$$

Thus, $\left\{\sum_{n=1}^{m}\left|x_{n}\right|\right\}_{m=1}^{\infty}$ is bounded, and thus $\sum\left|x_{n}\right|$ converges.
2. Suppose $L>1$. Then, since $\left|x_{n}\right|^{1 / n} \rightarrow L>1$, there exists an $M \in \mathbb{N}$ such that for all $n \geq M,\left|x_{n}\right|^{1 / n}>1$. In other words, for all $n \geq M,\left|x_{n}\right|>1$. Therefore, $\lim _{n \rightarrow \infty} x_{n} \neq 0$, and thus $\sum x_{n}$ diverges.

Remark 6. Again, note that if $L=1$ then the test doesn't apply.

Theorem 7 (Alternating Series test)
Let $\left\{x_{n}\right\}$ be a monotone decreasing sequence such that $x_{n} \rightarrow 0$. Then, $\sum(-1)^{n} x_{n}$ converges.

Proof: Let $s_{m}=\sum_{n=1}^{m}(-1)^{n} x_{n}$. Then,

$$
\begin{aligned}
s_{2 k} & =\sum_{n=1}^{2 k}(-1)^{n} x_{n} \\
& =\left(x_{2}-x_{1}\right)+\left(x_{4}-x_{3}\right)+\cdots+\left(x_{2 k}-x_{2 k-1}\right) \\
& \geq\left(x_{2}-x_{1}\right)+\cdots+\left(x_{2 k}-x_{2 k-1}\right)+\left(x_{2 k+2}-x_{2 k+1}\right) \\
& =s_{2(k+1)}
\end{aligned}
$$

as $\left\{x_{n}\right\}$ is a monotone decreasing sequence. Thus, $\left\{s_{2 k}\right\}_{k=1}^{\infty}$ is monotone decreasing. Furthermore,

$$
s_{2 k}=-x_{1}+\left(x_{2}-x_{3}\right)+\left(x_{4}-x_{5}\right)+\cdots+\left(x_{2 k-2}-x_{2 k-1}\right)+x_{2 k} \geq-x_{1}
$$

In other words, $\left\{s_{2 k}\right\}$ is a bounded below monotone decreasing sequence. Thus, $\left\{s_{2 k}\right\}_{k=1}^{\infty}$ converges. Let $s=$ $\lim _{k \rightarrow \infty} s_{2 k}$. We now prove $\left\{s_{m}\right\}_{m=1}^{\infty}$ converges to s.

Let $\epsilon>0$. Since $s_{2 k} \rightarrow s, \exists M_{0} \in \mathbb{N}$ such that for all $k \geq M_{0}$,

$$
\left|s_{2 k}-s\right|<\frac{\epsilon}{2}
$$

Since $x_{n} \rightarrow 0, \exists M_{1} \in \mathbb{N}$ such that $\forall n \geq M_{1}$,

$$
\left|x_{n}\right|<\frac{\epsilon}{2}
$$

Choose $M=\max \left\{2 M_{+} 0+1, M_{1}\right\}$. Suppose $m \geq M$. If m is even, then $\frac{m}{2} \geq M_{0}+1 / 2 \geq M_{0}$. Therefore,

$$
\left|s_{m}-s\right|=\left|s_{2 \cdot \frac{m}{2}}-s\right|<\frac{\epsilon}{2}<\epsilon
$$

If m is odd, let $k=\frac{m-1}{2}$ so $m=2 k+1$. Then, $m \geq M \Longrightarrow k \geq M_{0}$ and $m \geq M_{1}$. Then,

$$
\begin{aligned}
\left|s_{m}-s\right| & =\left|s_{m-1}+x_{m}-s\right| \\
& \leq\left|s_{2 k}-s+x_{m}\right| \\
& \leq\left|s_{2 k}-s\right|+\left|x_{m}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

Thus, $s_{m} \rightarrow s$, and thus $\sum(-1)^{n} x_{n}$ converges.

Corollary 8

We already showed that $\sum \frac{(-1)^{n}}{n}$ does not absolutely converge. However, $\sum \frac{(-1)^{n}}{n}$ converges.

Proof: This follows immediately from the Alternating Series test.

Theorem 9

Suppose $\sum x_{n}$ converges absolutely and $\sum x_{n}=x$. Let $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ be a bijective function. Then, $\sum x_{\sigma(n)}$ is absolutely convergent and $\sum x_{\sigma(n)}=x$. In other words, absolute convergence implies if we rearrange the sequence the new series will still converge to the same value of the original series.

Proof: We first show $\sum\left|x_{\sigma(n)}\right|$ converges, which is equivalent to showing the partial sums $\sum_{n=1}^{m}\left|x_{\sigma(n)}\right|$ is bounded. Since $\sum x_{n}$ converges, $\exists B \geq 0$ such that for all $\ell \in \mathbb{N}$,

$$
\sum_{n=1}^{\ell}\left|x_{n}\right| \leq B
$$

Let $m \in \mathbb{N}$. Then, $\sigma(\{1, \ldots, m\})$ is a finite subset of \mathbb{N}. Thus, there exists an $\ell \in \mathbb{N}$ such that

$$
\sigma(\{1, \ldots, m\}) \subset\{1, \ldots, \ell\}
$$

Thus,

$$
\sum_{n=1}^{m}\left|x_{\sigma(n)}\right|=\sum_{n \in \sigma(\{1, \ldots, m\})}\left|x_{n}\right| \leq \sum_{n=1}^{\ell}\left|x_{n}\right| \leq B
$$

Therefore, $\sum\left|x_{\sigma(n)}\right|$ converges. Let $x=\sum_{n=1}^{\infty} x_{n}$, and let $\epsilon>0$. Then, $\exists M_{0} \in \mathbb{N}$ such that $\forall m \geq M_{0}$,

$$
\left|\sum_{n=1}^{m} x_{n}-x\right|<\frac{\epsilon}{2}
$$

Since $\sum\left|x_{n}\right|$ converges, $\exists M_{1} \in \mathbb{N}$ such that for all $\ell>m \geq M_{1}$,

$$
\sum_{n=m+1}^{\ell}\left|x_{n}\right|<\frac{\epsilon}{2}
$$

Let $M_{2}=\max \left\{M_{0}, M_{1}\right\}$. Then, $\forall \ell>m \geq M_{2}$,

$$
\left|\sum_{n=1}^{m} x_{n}-x\right|<\frac{\epsilon}{2} \quad \text { and } \quad \sum_{n=m+1}^{\ell}\left|x_{n}\right|<\frac{\epsilon}{2}
$$

Since $\sigma^{-1}\left(\left\{1, \ldots, M_{2}\right\}\right)$ is a finite set, $\exists M_{3} \in \mathbb{N}$ such that

$$
\left\{1, \ldots, M_{2}\right\} \subset \sigma\left(\left\{1, \ldots, M_{3}\right\}\right)
$$

Choose $M=M_{3}$. Thus, if $m^{\prime} \geq M$,

$$
\begin{aligned}
\left|\sum_{n^{\prime}=1}^{m^{\prime}} x_{\sigma\left(n^{\prime}\right)}-x\right| & =\left|\sum_{n \in \sigma\left(\left\{1, \ldots, m^{\prime}\right\}\right)} x_{n}-x\right| \\
& =\left|\sum_{n=1}^{M} x_{n}-x+\sum_{n \in \sigma\left(\left\{1, \ldots, m^{\prime}\right\}\right) \backslash\{1, \ldots, M\}} x_{n}\right| \\
& \leq\left|\sum_{n=1}^{M} x_{n}-x\right|+\sum_{n=M+1}^{\max \sigma\left(\left\{1, \ldots, m^{\prime}\right\}\right)}\left|x_{n}\right| \\
& \leq\left|\sum_{n=1}^{M} x_{n}-x\right|+\sum_{n=M+1}^{\ell}\left|x_{n}\right| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

