18.100A: Complete Lecture Notes

Lecture 12:

The Ratio, Root, and Alternating Series Tests

We continue our study of convergence tests.

Theorem 1 (Ratio test) Suppose $x_n \neq 0$ for all n and $L = \lim_{n \to \infty} \frac{|x_{n+1}|}{|x_n|}$ exists. Then, 1. if L < 1 then $\sum x_n$ converges absolutely. 2. if L > 1 then $\sum x_n$ diverges.

Proof: We will first prove the second part of this theorem.

2) Suppose L > 1 and $\alpha \in (1, L)$. Then, there exists $M_0 \in \mathbb{N}$ such that for all $N \ge M_0$, $\frac{|x_{n+1}|}{|x_n|} \ge \alpha \ge 1$. Thus, for all $n \ge M_0$,

$$|x_{n+1}| \ge |x_n| \implies \lim_{n \to \infty} |x_n| \ne 0.$$

Therefore, $\sum x_n$ diverges.

1) Now suppose that L < 1. Let $\alpha \in (L, 1)$. Then, there exists $M_0 \in \mathbb{N}$ such that $\forall n \ge M_0, \frac{|x_{n+1}|}{|x_n|} < \alpha$. Therefore, $\forall n \ge M_0, |x_{n+1}| \le \alpha |x_n|$. In other words, for all $n \ge M_0$,

$$|x_n| \le \alpha |x_{n-1}| \le \alpha^2 |x_{n-2}| \le \dots \le \alpha^{n-M_0} |x_{M_0}|.$$

Let $m \in \mathbb{N}$. Then,

$$\sum_{n=1}^{m} |x_n| = \sum_{n=1}^{M_0 - 1} |x_n| + \sum_{n=M_0}^{m} |x_n|$$

$$\leq \sum_{n=1}^{M_0 - 1} |x_n| + |x_{M_0}| \sum_{n=M_0}^{m} \alpha^{n - M_0}$$

$$\leq \sum_{n=1}^{M_0 - 1} |x_n| + |x_{M_0}| \sum_{\ell=0}^{\infty} \alpha^{\ell}$$

$$= \sum_{n=1}^{M_0 - 1} |x_n| + \frac{|x_{M_0}|}{1 - \alpha}.$$

Therefore, $\left\{\sum_{n=1}^{m} |x_n|\right\}_{m=1}^{\infty}$ is bounded, and thus $\sum |x_n|$ converges. Hence, x_n is absolutely convergent.

Let's consider two examples where we can use the Ratio test.

Example 2

Show the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2+1}$ converges absolutely.

Proof: Notice

$$\left|\frac{(-1)^n}{n^2+1}\right| \le \frac{1}{n^2+1} < \frac{1}{n^2},$$

and hence

$$\lim_{n \to \infty} \left| \frac{\frac{(-1)^{n+1}}{(n+1)^2 + 1}}{\frac{(-1)^n}{n^2 + 1}} \right| < \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1.$$

Example 3

Show that $\forall x \in \mathbb{R}, \sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges absolutely.

Proof: This immediately follows from the Ratio test, noting that

$$\lim_{n \to \infty} \frac{|x|^{n+1}}{(n+1)!} \cdot \frac{n!}{|x|^n} = \lim_{n \to \infty} \frac{|x|}{n+1} = 0.$$

Remark 4. As seen above, the Ratio test can be really helpful to use when we have a $(-1)^n$ or a factorial in the argument. Also note that if L = 1 then we the test doesn't apply.

Theorem 5 (Root test) Let $\sum x_n$ be a series and suppose that

$$L = \lim_{n \to \infty} |x_n|^{1/n}$$

exists. Then,

1. if L < 1 then $\sum x_n$ converges absolutely.

2. if L > 1 then $\sum x_n$ diverges.

Proof:

1. Suppose L < 1. Let L < r < 1. Then, since $|x_n|^{1/n} \to L$, $\exists M \in \mathbb{N}$ such that $\forall n \ge M$, $|x_n|^{1/n} < r$. Therefore, for all $n \ge M$, $|x_n| \le r^n$. Thus, for all $m \in \mathbb{N}$,

$$\sum_{n=1}^{m} |x_n| = \sum_{n=1}^{M-1} |x_n| + \sum_{n=M}^{m} |x_n|$$
$$\leq \sum_{n=1}^{M-1} |x_n| + \sum_{n=M}^{m} r^n$$
$$\leq \sum_{n=1}^{M-1} |x_n| + \sum_{n=M}^{\infty} r^n$$
$$= \sum_{n=1}^{M-1} |x_n| + \frac{r^M}{1-r}.$$

Thus, $\left\{\sum_{n=1}^{m} |x_n|\right\}_{m=1}^{\infty}$ is bounded, and thus $\sum |x_n|$ converges.

2. Suppose L > 1. Then, since $|x_n|^{1/n} \to L > 1$, there exists an $M \in \mathbb{N}$ such that for all $n \ge M$, $|x_n|^{1/n} > 1$. In other words, for all $n \ge M$, $|x_n| > 1$. Therefore, $\lim_{n\to\infty} x_n \ne 0$, and thus $\sum x_n$ diverges.

Remark 6. Again, note that if L = 1 then the test doesn't apply.

Theorem 7 (Alternating Series test)

Let $\{x_n\}$ be a monotone decreasing sequence such that $x_n \to 0$. Then, $\sum (-1)^n x_n$ converges.

Proof: Let $s_m = \sum_{n=1}^m (-1)^n x_n$. Then,

$$s_{2k} = \sum_{n=1}^{2k} (-1)^n x_n$$

= $(x_2 - x_1) + (x_4 - x_3) + \dots + (x_{2k} - x_{2k-1})$
 $\geq (x_2 - x_1) + \dots + (x_{2k} - x_{2k-1}) + (x_{2k+2} - x_{2k+1})$
= $s_{2(k+1)}$

as $\{x_n\}$ is a monotone decreasing sequence. Thus, $\{s_{2k}\}_{k=1}^{\infty}$ is monotone decreasing. Furthermore,

$$s_{2k} = -x_1 + (x_2 - x_3) + (x_4 - x_5) + \dots + (x_{2k-2} - x_{2k-1}) + x_{2k} \ge -x_1$$

In other words, $\{s_{2k}\}$ is a bounded below monotone decreasing sequence. Thus, $\{s_{2k}\}_{k=1}^{\infty}$ converges. Let $s = \lim_{k \to \infty} s_{2k}$. We now prove $\{s_m\}_{m=1}^{\infty}$ converges to s.

Let $\epsilon > 0$. Since $s_{2k} \to s$, $\exists M_0 \in \mathbb{N}$ such that for all $k \ge M_0$,

$$|s_{2k} - s| < \frac{\epsilon}{2}.$$

Since $x_n \to 0$, $\exists M_1 \in \mathbb{N}$ such that $\forall n \ge M_1$,

$$|x_n| < \frac{\epsilon}{2}.$$

Choose $M = \max\{2M_+0 + 1, M_1\}$. Suppose $m \ge M$. If m is even, then $\frac{m}{2} \ge M_0 + 1/2 \ge M_0$. Therefore,

$$|s_m - s| = |s_2 \cdot \frac{m}{2} - s| < \frac{\epsilon}{2} < \epsilon.$$

If m is odd, let $k = \frac{m-1}{2}$ so m = 2k + 1. Then, $m \ge M \implies k \ge M_0$ and $m \ge M_1$. Then,

$$\begin{aligned} |s_m - s| &= |s_{m-1} + x_m - s| \\ &\leq |s_{2k} - s + x_m| \\ &\leq |s_{2k} - s| + |x_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

Thus, $s_m \to s$, and thus $\sum (-1)^n x_n$ converges.

Corollary 8

We already showed that $\sum \frac{(-1)^n}{n}$ does not absolutely converge. However, $\sum \frac{(-1)^n}{n}$ converges.

Proof: This follows immediately from the Alternating Series test.

Theorem 9

Suppose $\sum x_n$ converges absolutely and $\sum x_n = x$. Let $\sigma : \mathbb{N} \to \mathbb{N}$ be a bijective function. Then, $\sum x_{\sigma(n)}$ is absolutely convergent and $\sum x_{\sigma(n)} = x$. In other words, absolute convergence implies if we rearrange the sequence the new series will still converge to the same value of the original series.

Proof: We first show $\sum |x_{\sigma(n)}|$ converges, which is equivalent to showing the partial sums $\sum_{n=1}^{m} |x_{\sigma(n)}|$ is bounded. Since $\sum x_n$ converges, $\exists B \ge 0$ such that for all $\ell \in \mathbb{N}$,

$$\sum_{n=1}^{\ell} |x_n| \le B$$

Let $m \in \mathbb{N}$. Then, $\sigma(\{1, \ldots, m\})$ is a finite subset of \mathbb{N} . Thus, there exists an $\ell \in \mathbb{N}$ such that

$$\sigma(\{1,\ldots,m\}) \subset \{1,\ldots,\ell\}.$$

Thus,

$$\sum_{n=1}^{m} |x_{\sigma(n)}| = \sum_{n \in \sigma(\{1, \dots, m\})} |x_n| \le \sum_{n=1}^{\ell} |x_n| \le B.$$

Therefore, $\sum |x_{\sigma(n)}|$ converges. Let $x = \sum_{n=1}^{\infty} x_n$, and let $\epsilon > 0$. Then, $\exists M_0 \in \mathbb{N}$ such that $\forall m \ge M_0$,

$$\left|\sum_{n=1}^{m} x_n - x\right| < \frac{\epsilon}{2}$$

Since $\sum |x_n|$ converges, $\exists M_1 \in \mathbb{N}$ such that for all $\ell > m \ge M_1$,

$$\sum_{n=m+1}^{\ell} |x_n| < \frac{\epsilon}{2}.$$

Let $M_2 = \max\{M_0, M_1\}$. Then, $\forall \ell > m \ge M_2$,

$$\left|\sum_{n=1}^{m} x_n - x\right| < \frac{\epsilon}{2} \quad \text{and} \quad \sum_{n=m+1}^{\ell} |x_n| < \frac{\epsilon}{2}.$$

Since $\sigma^{-1}(\{1,\ldots,M_2\})$ is a finite set, $\exists M_3 \in \mathbb{N}$ such that

$$\{1,\ldots,M_2\}\subset\sigma(\{1,\ldots,M_3\}).$$

Choose $M = M_3$. Thus, if $m' \ge M$,

$$\sum_{n'=1}^{m'} x_{\sigma(n')} - x \bigg| = \bigg| \sum_{n \in \sigma(\{1,...,m'\})} x_n - x \bigg| \\= \bigg| \sum_{n=1}^{M} x_n - x + \sum_{n \in \sigma(\{1,...,m'\}) \setminus \{1,...,M\}} x_n \bigg| \\\leq \bigg| \sum_{n=1}^{M} x_n - x \bigg| + \sum_{n=M+1}^{\max \sigma(\{1,...,m'\})} |x_n| \\\leq \bigg| \sum_{n=1}^{M} x_n - x \bigg| + \sum_{n=M+1}^{\ell} |x_n| \\\leq \bigg| \sum_{n=1}^{M} x_n - x \bigg| + \sum_{n=M+1}^{\ell} |x_n| \\\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

18.100A / 18.1001 Real Analysis Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.